From Wastebin to Wastewater Treatment: Synthesis of Biogenic Carbonate Hydroxyapatite from Eggshells and Its Potential for Lead (Pb2+) Removal
Author(s)
Abdul-Rauf Ibrahim , Sulemana Yahaya , Tarlutu Ibrahim , Abdul-Mumin Abdulai ,
Download Full PDF Pages: 01-09 | Views: 201 | Downloads: 59 | DOI: 10.5281/zenodo.7611784
Abstract
We theorized that employing solid-solid reaction with high-pressure CO2 at low to medium temperatures using waste eggshells would be ideal for preparing carbonate hydroxyapatite (CHAp) powders. We synthesized bioCHAp from waste eggshells and investigated the performance of the product in the removal of lead (Pb2+) from contaminated (wastewater) water.
The results revealed that eggshells can be recycled to produce type-B bioCHAp with recommended biological apatite carbonate content (3.7 and 7.4 wt %). Furthermore, 40.0 mg of the bioCHAp removed 98.0 % of Pb2+ commendably from 200mL of 200mg/L (0.57mol/ml) lead acetate solution within 40 min and 100.0% of the Pb2+ in 50 min (half an hour). Interestingly, the bioCHAp also exhibited satisfactory adsorption of Pb2 + (85.0 %) in 60 min with 25 mg of the product. Eventually, the 25 mg bioCHAp yielded adsorption capacity of 1360.0 mg/g at equilibrium which is better than values reported for similar works in the literature.
The results proved that the synthesized bioCHAp from waste eggshells could also be used as an effective and a cheaper biosorbent for heavy metal (Pb2+) removal.
Keywords
carbonated hydroxylapatite; wastewater treatment, lead, eggshells, Wastebin
References
i. Baillez, S., zihou, A., Bernache-Assolant, D., Champion, E., Sharrock, P. (2007). Removal of aqueous lead ions by hydroxyapatites: equilibria and kinetic processes, J. Hazard. Mater., 139, 443-446
ii. Cheng, K., Weng, W., Han, G., Du, P., Shen, G., Yang, J., Ferreira, J. M. (2003). The effect of triethanolamine on the formation of sol-gel derived fluoroapatite/hydroxyapatite solid solution. Mater. Chem. Phys., 78, 767-771
iii. Grunenwald, C. K., Sautereau, A. M., Crubezy, E., Ludes, B., Drouet, C. (2014). Adsorption of DNA on biomimetic apatites: toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl. Surf. Sci. 292, 867-875
iv. Ibrahim, A.-R. , Wei, W.X. , Zhang, D. , Wang, H.T. , Li, J. (2013). Conversion of waste eggshells to mesoporous hydroxyapatite nanoparticles with high surface area, Materials Letters, 110, 195–197
v. Ibrahim, A.-R. , Zhou, Y.L. , Li, X.Y. , Chen, L. , Hong, Y.Z. , Su, Y.Z. , Wang, H.T. , Li, J. (2015). Synthesis of rod-like hydroxyapatite with high surface area and pore volume from eggshells for effective adsorption of aqueous Pb(II), Materials Research Bulletin, 62, 132–141
vi. Ibrahim, A.-R., Li, X.Y., Zhou, Y.L., Huang, Y., Chen, W.W., Wang, H.T., Li, J. (2015) Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2, Int. J. Mol. Sci. 16, 7960–7975
vii. Kaludjerovic-Radoicica, T., Raicevic, S. (2010). Aqueous Pb sorption by synthetic and natural apatite: kinetics, equilibrium, and thermodynamic studies. Chem. Eng. J., 160, 503–510.
viii.Kim, M. S., Kim, Y.-J. (2012). Synthesis of Calcium-Deficient Hydroxyapatite in the presence of Amphiphilic Triblock Copolymer. Mater. Lett., 66, 33-35
ix. Kumar, P. S., Senthamarai, C., Sai Deepthi, A. S. L., Bharan, R. (2013). Adsorption isotherms, kinetics and mechanism of Pb (II) ions removal from aqueous solution using chemically modified agricultural waste. the Canadian Journal of Chemical Engineering, 91, 1950–1956
x. Lee, P., Messersmith, P. B., Israelachvili, J. N., Waite, J. H. (2011). Mussel-Inspired Adhesives and Coatings. Annu. Rev. Mater. Res., 41, 99-132
xi. Lin, K., Liu, X., Chang, J., Zhu, Y. (2011). Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors, Nanoscale, 3, 3052-3055
xii. Marchat, D. B., Champion, E. (2007). Cadmium fixation by synthetic hydroxyapatite in aqueous solution-thermal behaviour. J. Hazard. Mater., 139, 453-460
xiii.McCool, C., Tripp P. (2005). Inaccessible Hydroxyl Groups on Silica Are Accessible in Supercritical CO2. J. Phys. Chem. B, 109, 8914–8919
xiv.Meski, S., Ziani, S., Khireddine, H. (2010). Removal of lead ions by hydroxyapatite prepared from the egg shell. J. Chem. Eng. Data, 55, 3923-3928
xv. Mizushima, Y., Ikoma, T., Tanaka, J., Hoshi, K., Ishihara, T., Ogawa, Y., Ueno, A. (2006). Injectable Porous Hydroxyapatite Microparticles as a New Carrier for Protein and Lipophilic Drugs. Journal of Control Release, 110, 260-265
xvi.Othman, R., Tram, N. X. T., Noor, A. F. M. (2013). Dry Mechanosynthesis of Carbonate Substituted Hydroxyapatite. School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia,
xvii. Rauschmann, M. A., Wichelhaus, T. A., Stirnal, V., Dingeldein, E., Zichner, L., Schnettler, R., Alt, V. (2005). Nanocrystalline hydroxyapatite and calcium Sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomater, 26, 2677-2684
xviii. Ripamonti, U., Crooks, J., Khoali, L., Roden, L. (2009). The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials, 30, 1428–1439
xix.Rovensky, J., Stancikova, M., Masaryk, P., Svik, K., Istok, R. (2003). Eggshell calcium in the prevention and treatment of osteoporosis, Int. J. Clin. Pharmacol. Res., 23, 83-92
xx. Tomoda, K., Ariizumi, H., Nakaji, T., Makino, K. (2010). Hydroxyapatite particles as drug carriers for proteins. Colloids Surf. B, Biointerfaces, 76, 226-235
xxi.Vecchio, K. S., Zhang, X., Massie, J. B., Wang, M., Kim, C. W. (2007). Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater., 3, 910–918
xxii. Zhang, X., Vecchio, K. S. (2007). Hydrothermal Synthesis of Hydroxyapatite Rods. Journal of Crystal Growth, 308, 133-140
xxiii. Zhang, Z. Z., Li, M.Y., Chen, W., Zhu, S. Z., Liu, N. N., Zhu, L. Y. (). Immobilization of Lead and Cadmium from Aqueous Solution and Contaminated Sediment Using Nano-Hydroxyapatite. Environmental Pollution, 158, 2010, 514-519
xxiv. Zheng, W., Li, X. M., Yang, Q., Zeng, G. M., Shen, X. X., Zhang, Y., Liu, J. J. (2007). Adsorption of Cd (II) and Cu (II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste. J. Hazard. Mater. 147, 534–539
Cite this Article: