Management of Onion Rust through Host Resistance and Alternate Application of Fungicides in Adjara,Georgia

Author(s)

Otar Shainidze , Guram Chkhubadze , Shota Lamparadze , Nodar Beridze , Mamuca Turmanidze ,

Download Full PDF Pages: 48-60 | Views: 225 | Downloads: 59 | DOI: 10.5281/zenodo.7188983

Volume 6 - August 2022 (08)

Abstract

Onion (Allium cepa) is the most important vegetable among Allium crops in the world due to its nutritional and health benefits, attached by many harmful Pathogens. The main objective of this study was to identify and determine the main pathogens of Onion evaluate the effects of integrated disease management through host resistance; alternate fungicide applications on rust epidemic and bulb yield; and determine the economics of fungicide application in the management of onion rust. Field experiments were conducted in Adjara (Khelvachauri and Keda), using 3 onion  varieties, namely Creole, Pinoy F1  and Enza  (local cultivar)  Mancozeb and Nativo fungicides were sprayed with alternate and alone applications during the 2019/2022 cropping season. Treatments were arranged factorially in a randomized complete block design with three replications.  Analyses of variance revealed that interaction effects of Mancozeb, Nativo, and their alternate applications with   Pinoy F1 and Creole varieties showed the lowest disease severity, area under the disease progress curve, and disease progress rate as compared to the unsprayed plots of all varieties. The higher disease severity was recorded in 2020 than in 2019 cropping season.  In Adjara (2019), the variety Pinoy F1  showed significantly higher (21.1 t ha-1) yield and, exhibited 1.4 t   and 6.0 t   yield advantags over Creole variety and the  local cultivar, respectively. However, there was no significant difference among the fungicides tested on bulb yield in both districts, but lower relative yield losses were recorded in response to application of Mancozeb and Nativo alone. In 2020 than the maximum net profit was obtained on the onion varieties Pinoy F1 and Creole    in combination with Mancozeb fungicide alone and on the variety Local only with Nativo. In case of alternate fungicide applications, higher marginal rate of return was noted than on unprotected plots. Especially treatment of Pinoy F1 and Local cultivar with Mancozeb+Nativo indicated higher marginal rate of return value than Nativo+Mancozeband and unsprayed plots.

Keywords

onion, pathogen, Puccinia alli, Fungicides, mancozeb, native, severity, effect

References

 i      Gambo,  B.A.  Magaji, M.D.Yakubu,  A.I.  Dikko,  A.U.,  2008.  Effects  of Farmyard manure, nitrogen and weed interference on the growth and yield of onion (Allium cepaL.) at the Sokoto Rima Valley. J. Sustain. Develop. Agric. Environ.3(2):87-92.). 

ii       Messiaen,  C.M.,  1998. The  alliums:  the  tropical vegetable  garden;  principles  for improvement  and  increased  production with  application  to  the  main  vegetable types. Macmillan, London, 54-  58.

iii    Dawar,  N.M.  Wazir,  F.K.  Dawar,  M.  Dawar, S.H.,  2007. Effect  of  plant  population  density  on growth  and  yield  of  onion  varieties  under climatic  conditions  of  Peshawar.  Sarhad Journal of Agriculture, 23(4):912-917

iv.     Marziyeh, T. Soheil, A. Reza, S., 2010. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultra-structure of Aspergillus niger van Tieghem. Int J Food Microbiol., 139:127–133. 

v     Hussain, F.N. Abd-Elrazik, F.A. Darweish, A., 1977. Survey of storage diseases of onion and their incidents   in upper. Egypt J Phytopathol., 9:15–23.

vi      Yohalem, D.S. Nielsen, K. Nicolaisen, M., 2003. Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotax., 85:175–182.

vii      Sang, M.K. Han, G.D. Oh, J.Y, et al.. Penicillium brasilianum as a novel pathogen of onion (Allium cepa  L.)  and other fungi predominant on market onion in Korea. Crop Protect. 2014;65:138–142.

viii    O. T. Shainidze, 2013. “The Results of Phytopathological Research in Adjara,” Book, Tbilisi, pp.3-304

ix     Katoh, K.  Asimenos,  G. Toh, H., 2009. Multiple Alignment of DNA Sequences with MAFFT. In: Posada D (ed) Bioinformatics for DNA Sequence Analysis, vol 537. Methods in Molecular Biology. Humana Press, pp 39–64.

x      Liu, K. Warnow, T.J. Holder, M .T.  Nelesen, S.M. Stamatakis,  A.P. Linder,  C.R.,  2012. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology,  61:90–106.

xi     Metcalf, D.A., 2002. Host range of Tasmanian strains of onion rust. In: Napier T (ed) Proceedings Onions  Conference, National Vegetable Industry Centre, Yanco Agricultural Institute, Australia, 69–72.

xii   Gäuma,   E., 1959.  Die Rostpilze Mitteleuropas, vol 12. Beiträge zur Kryptogamenflora der Schweiz. Buchdruckerei Buchler & Co., Bern, Germany.

xiii   Anikster, Y. Szabo L.J. Eilam, T. Manisterski, J. Koike, S.T. Bushnell, W.R., 2004. Morphology, life cycle biology, and DNA sequence analysis of rust fungi on garlic and chives from California. Phytopathology, 94:569–577.

xiv    Koike, S.T. Smith, R.F. Davis, R.M. Nunez, J.J. Voss, R. E.,  2001. Characterization and control of garlic rust in  California. Plant Disease, 85:585–591

xv    Dixon, L. J. Castlebury, L.A. Aime, M.C. Glynn, N.C. Comstock, J.C., 2010. Phylogenetic relationships of  sugarcane rust fungi. Mycological Progress, 9:459–468.

xvi     L. A. Kanchaveli,  1987. “Agricultural Phytopathology,” Book,Tbilisi “, pp. 3 – 600.

xvii    Malik, G. Mahajan, V. Singh, A.S. Sharma, A. Mir, J.I. Sajad, H. and Wani, S. Y., 2017. Present status andfuture prospects of garlic (Allium sativum L .) improvement in India with special reference to longday type. Journal of Pharmacognosy and Phytochemistry, 6(5): 929-933

xvii  Foster, M. Mueller, G. Bills, 2004. Biodiversity of fungi. Inventory and monitoring methods [Book]. –Boston: Elsevier Academic Press., pp: 67- 98.    

xix     Holmgren, P. K. Holmgren, N.,H. and L. C. Barbett, 1990. Index herbariorum, Part. 1: The Herbaria of  the World. 8th edn. Regnum vegetab. 120, pp: 1-683.

xx      Worku, Y. and Dejene, M., 2012. Effects of Garlic Rust (Puccinia allii) on Yield and Yield Components of  garlic. Plant Pathology and Microbiology, 3(2):3-6.

xxi      Dilbo, C. Alemu, M. Lencho, A. and Hunduma, T., 2015. Integrated Management of Garlic White Rot (Sclerotium cepivorum Berk.) Using Some Fungicides and Antifungal Trichoderma Species. Journal of Plant  Pathology and Microbiology, 6(4): 1-9.

xxii     Horneburg, B. & Becker, H. C., 2011. Selection for Phytophthora field resistance in the F2 generation of organic  outdoor tomatoes. Euphytica, 180, 357 – 367.

xxiii   Berger, R.D., 1981. Comparison of the Gompertz and Logistic  equation to describe plant disease progress. Phytopathology, 71(7): 716-719.

xxiv    Wheeler, B. J.,  1969. An Introduction to Plant Diseases. John Wiley and Sons, Ltd., 374.

xxv     Steel, R. G. D. Torrie, J. H. & Dicky, D. A., 1997. Principles and Procedures of Statistics, A Biometrical  Approach. 3rd Edition, McGraw Hill, Inc. Book Co., New York, 352-358.

xxi     Campbell, C.L. and Madden, V.L. 1990. Introduction to Plant Disease Epidemiology. New York Wiley, 532 pp.

xvii     Van der Plank, J.E., 1963. Plant diseases: Epidemics and control. London: Acadamic press. 346 pp.  

xxviii    Berger, R.D., 1981. Comparison of the Gompertz and Logistic equation to describe plant disease progress. Phytopathology, 71(7): 716-719.

xxvix   Gomez, K.A. and Gomez, A., 1984. Statistical procedure for agricultural research, 2nd edition. A Wiley Interscience Publications, New York, 691 pp.

xxx       SAS/ Stat Guide for Personal Computers, Version 9.1 edition. SAS Institute Inc., Cary, North Carolina. USA.

xxxi     Robert, G.D. & James, H.T., 1991. A Biomerical approach. Principles of statistics 2nd ed. New York.USA. SAS Institute Inc., (2009).

xxxii    CIMMYT (International Maize and Wheat Improvement Center). 1988. From Agronomic Data to  Farmer  Recommendations: An Economics Training Manual. Completely Revised Edition, Mexico D.F. 79,  pp.

xxxiii      Yarwood, C.E. Gardner, M.W.  1941.  Garlic rust infects onion. Plant Dis Rep. 25:20.

xxxiv       Jennings,  D.M. Ford-Lloyd,  B.V., 1990. Butler GM. Morphological analysis of spores from different  allium rust   populations. Mycol. Res. 94:83-93.

xxxv        Schwartz, H.F. and Mohan, K.S., 2008.  Basal Rot of Onion. In: Schwartz, F.H. and Mohan Krishna, S., Eds., Compendium of Onion and Garlic Diseases, 2è Edition, The American Phytopahological Society, APS Press, St. Paul, MN.

xxxvi   Behroozin, M. and P. Asadi, 1994. Report on three Fusarium species on the causal agents of the basal and root –rot of onion and their distribution east. Azarbaijan. Rev. Pl. Pathol. 74(10): 6423.

xxxvii   Somkuwar, R. G. Gowda, R. V.  Singh, T. H. and C. S. Pathak, 1996. Screening of onion for    resistance    to  onion basal rot. Madras Agr J 83: 273–275.

xxxviii     Worku, Y., 2017. Determination of Optimum Nativo SC 300 (Trifloxystrobin 100 g/L+Tebuconazole 200 g/L ) Spray Frequency for Control of Rust (Puccinia allii Rudolphi) on Garlic in Bale Highlands, Southeastern Ethiopia. American Journal of Agriculture and Forestry, 5(2): 16-19.

Cite this Article: