Estimation of Litter Production in Mixed Garden Forest Ecosystems
Author(s)
Adam Malik , Imran Rachman , Naharuddin Naharuddin ,
Download Full PDF Pages: 62-66 | Views: 221 | Downloads: 78 | DOI: 10.5281/zenodo.7689174
Abstract
Litter is one of the sources of soil organic matter that develops through the decomposition process, which is overhauled and broken down into smaller particles, producing dissolved nutrients. Therefore, this research aims to determine the litter production from forest land conversion in mixed gardens as a basis for sustainable forest management. The method used is a field survey, in which direct observations were carried out. Subsequently, the types of data collected include primary data by observing the production of litter for two weeks, which comprises the wet weight and dry weight of the litter and the average production of its components, as much as 1 ha. The results showed that Theobroma cacao had the highest litter production in mixed gardens at 1.24 tons/ha/year, while Lansium domesticum had the lowest litter production at 0.06 tons/ha/year, and the most litter contribution comes from the leaves by 60% - 67%.
Keywords
Litter, Mixed Garden, organic matter, forest ecosystem
References
i. Adamczyk, B., Sietiö, O. M., Biasi, C., & Heinonsalo, J. (2019). Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. The New Phytologist, 223(1), 16-21.
ii. Adeyemo, A. J., Akingbola, O. O., & Ojeniyi, S. O. (2019). Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8, 73-80.
iii. Alamsyah, R., Marni, M., Fattah, N., Liswahyuni, A., & Permatasari, A. (2018). Laju dekomposisi serasa daun mangrove di kawasan wisata Tongke-Tongke Kabupaten Sinjai. Agrominansia, 3(1), 72-77.
iv. Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., & Poorter, L. (2019). Amazonian rainforest tree mortality is driven by climate and functional traits. Nature Climate Change, 9(5), 384-388.
v. Aprianis, Y. (2011). Produksi dan laju dekomposisi serasah Acacia crassicarpa A. Cunn. di PT. Arara Abadi. Tekno Hutan Tanaman, 4(1), 41-47.
vi. Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R., & Morales-Ruiz, D. E. (2019). Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry systems, 93(1), 213-227.
vii. Brovkin, V., Van Bodegom, P. M., Kleinen, T., Wirth, C., Cornwell, W. K., Cornelissen, J. H. C., & Kattge, J. (2012). Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences, 9(1), 565-576.
viii.Chertov, O. G., Komarov, A. S., Nadporozhskaya, M., Bykhovets, S. S., & Zudin, S. L. (2001). ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. Ecological modeling, 138(1-3), 289-308.
ix. Chomel, M., Guittonny‐Larchevêque, M., Fernandez, C., Gallet, C., DesRochers, A., Paré, D., ... & Baldy, V. (2016). Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104(6), 1527-1541.
x. Cuevas, E., & Lugo, A. E. (1998). Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. Forest ecology and management, 112(3), 263-279.
xi. Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment, 44(1), 1-9.
xii. Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil biology and biochemistry, 34(2), 139-162.
xiii.Lakshmi, G., Okafor, B. N., & Visconti, D. (2020). Soil microarthropods and nutrient cycling. In Environment, climate, plant and vegetation growth (pp. 453-472). Springer, Cham.
xiv.Martin, F. P., Abdullah, M., Hadiyanti, L. N., & Widianingrum, K. (2018). Leaf litter production of mahogany along street and campus forest of Universitas Negeri Semarang, Indonesia. In Journal of Physics: Conference Series (Vol. 983, No. 1, p. 012180). IOP Publishing.
xv. Mayer, M., Prescott, C. E., Abaker, W. E., Augusto, L., Cécillon, L., Ferreira, G. W., ... & Vesterdal, L. (2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466, 118127.
xvi.Naharuddin, N., Wahid, A., Golar, G., Rachman, I., Akhbar, A., & Massiri, S. D. (2022). Soil Infiltration In Various Areas As A Basis For Hydrlogical Alterations In The Toboli Watershed, Central Sulawesi, Indonesia. Water Conservation & Management (WCM), 6(2), 76-80.
xvii. Osman, K. T. (2013). Organic matter of forest soils. In Forest Soils (pp. 63-76). Springer, Cham.
xviii. Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S., & Rachmawati, R. (2019). Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. Journal of Degraded and Mining Lands Management, 6(3), 1727.
xix.Prescott, C. E., & Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498, 119522.
xx. Tresch, S., Frey, D., Le Bayon, R. C., Zanetta, A., Rasche, F., Fliessbach, A., & Moretti, M. (2019). Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Science of the Total Environment, 658, 1614-1629.
xxi.Soong, J. L., Fuchslueger, L., Marañon‐Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., & Richter, A. (2020). Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global change biology, 26(4), 1953-1961.
xxii. Wang, Z. J., Li, S. L., Yue, F. J., Qin, C. Q., Buckerfield, S., & Zeng, J. (2020). Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high-resolution hydrochemistry and nitrate isotopes. Agriculture, ecosystems & environment, 291, 106787.
xxiii. Wrede, J. (2010). Trees, shrubs, and vines of the Texas Hill Country: a field guide (Vol. 39). Texas A&M University Press.
xxiv. Zhang, S., Fang, Y., Luo, Y., Li, Y., Ge, T., Wang, Y., & Chang, S. X. (2021). Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Science of The Total Environment, 801, 149717.
Cite this Article: