Evaluation of the Transgenic Potato Plantlets in Hydroponic Culture for Salt Tolerance

Author(s)

Muhammad Shah Zaman , Iqbal Hussain , Aish Muhammad , Zaheer Abbas , Sabir Hussain Shah , Kazim Ali ,

Download Full PDF Pages: 11-18 | Views: 87 | Downloads: 35 | DOI: 10.5281/zenodo.11403983

Volume 7 - August 2023 (08)

Abstract

The agricultural crop yield has been lessening due to the adverse effect of global warming and climate change. Salts stress is major yield devastating factor in crops. Hydroponics is an approach of growing plants in aqueous solution carrying basic nutrients without soil. In this experiment evaluation of plantlets of transgenic potato varieties Asterix and Sante having AtNHX1 gene along with their wild types (non-transgenic) was carried out at National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad in the screen house conditions. The transgenic and control plants were tested at different NaCl levels 0.0, 20, 40 and 60 mM NaCl under hydroponic conditions. Both the transgenic potato lines not only survived successfully but also showed greater tolerance to salt stress even at 60 mM NaCl for plant height, number of nodes per plant, root length, root weight, shoot weight and total chlorophyll contents. On the other hand, the non-transformed plantlets (control) of Asterix and Sante could not survive even at 20 mM NaCl stress.

Keywords

Transgenic Potato Plantlets, Hydroponic Culture, Salt Tolerance

References

Aghaei, K., Ehsanpour, A. A., & Komatsu, S. (2008). Proteome analysis of potato under salt stress. Journal of Proteome Research, 7(11), 4858-4868.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24(1), 1.

Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376.

Ashraf, M., & Akram, N. A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology advances, 27(6), 744-752.

Asif, M. A., Zafar, Y., Iqbal, J., Iqbal, M. M., Rashid, U., Ali, G. M.,  & Nazir, F. (2011). Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Molecular Biotechnology, 49, 250-256.

Askari, A., & Pepoyan, A. (2012). Overexpression of mtlD gene in potato (solatium tuberosum L.), cv. Arinda improves salt tolerance. Advances in Environmental Biology, 2646-2654.

Chen, M., Chen, Q., Niu, X., Zhang, R., Lin, H., Xu, C. & Chen, J. (2007). Expression of OsNHX1 gene     in maize confers salt tolerance and promotes plant growth in the field. Plant Soil and Environment, 53(11), 490.

Cha-um S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot. 41:87–98

Evers, D., Bonnechère, S., Hoffmann, L., & Hausman, J. F. (2007). Physiological aspects of abiotic stress   response in potato. Belgian Journal of Botany, 141-150.

Folgado, R., Panis, B., Sergeant, K., Renaut, J., Swennen, R., & Hausman, J. F. (2013). Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L. International Journal of Molecular Sciences, 14(3), 4912-4933.

Gao, H. J., Yang, H. Y., Bai, J. P., Liang, X. Y., Lou, Y., Zhang, J. L., ... & Chen, Y. L. (2015). Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Frontiers in plant science, 5, 787.

Jeong, M. J., Park, S. C., & Byun, M. O. (2001). Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Molecules & Cells (Springer Science & Business Media BV), 12(2).

Li T, Zhang Y, Liu H, Wu Y, Li W, Zhang H (2010) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin. 55 (12):1127-1134.

Masoudi-Sadaghiani, F., Babak, A. M., Zardoshti, M. R., Hassan, R. S. M., & Tavakoli, A. (2011). Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato   (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Australian            Journal of Crop Science, 5(1), 55-60.

Mullins, E., Milbourne, D., Petti, C., Doyle-Prestwich, B. M., & Meade, C. (2006). Potato in the age of biotechnology. Trends in Plant Science, 11(5), 254-260.

Park, E. J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., & Chen, T. H. (2004). Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. The Plant Journal, 40(4), 474-487.

Qayyum, M. and Kunwar, S. (2013). Selection of potato(Solanum tuberosum L. cv. Cardinal) plantlets tolerantto in vitro salt and drought stress. Pak. J. Biochem. Mol.Biol., 46(1): 37-41.

S.K. Sanwal, P. Kumar, H. Kesh, V.K. Gupta, A. Kumar, A. Kumar, B.L. Meena, G. Colla, M. Cardarelli,     P. Kumar. (2022). Salinity stress tolerance in potato cultivars: Evidence from physiological and biochemical traits Plants, 11 (2022), p. 1842.

Saadia, M., Jamil, A., Akram, N. A., & Ashraf, M. (2012). A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules, 17(5), 5803-5815.

Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment, 25(2), 163-171.

Sayari Hmida-, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., & Jaoua, S. (2005).Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169(4), 746-752.

Sharif, P., Seyedsalehi, M., Paladino, O., Van Damme, P., Sillanpää, M., & Sharifi, A. A. (2018). Effect      of drought and salinity stresses on morphological and physiological characteristics of canola. International Journal of Environmental Science and Technology, 15, 1859-1866.

Tang, R., Li, C., Xu, K., Du, Y., & Xia, T. (2010). Isolation, functional characterization, and expression      pattern of a Vacuolar Na+/H+ antiporter Gene TrNHX1 from Trifolium repens L. Plant molecular biology reporter, 28, 102-111.

Tian, L., Huang, C., Yu, R., Liang, R., Li, Z., Zhang, L. & Wu, Z. (2006). Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. African Journal of Biotechnology, 5(11).

Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14.

Wang, L., Zhang, J., Wang, D.,Zhang, J., Cui, Y., Liu, Y. & Binyu. (2013). Assessment of salt tolerance in transgenic potato carrying AtNHX1 gene. Crop Science, 53(6), 2643-2651.

Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in thesalt stress response. The Plant Journal, 30(5), 529-539

Zhang, H. X., & Blumwald, E. (2001).Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature biotechnology, 19(8), 765-768.

Zhang, H. X., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98(22), 12832-12836.

Cite this Article: