Microwave Optimization of the Process for Obtaining Activated Carbon from Agricultural Waste

Author(s)

Roberto Antonio Canales Flores , Francisco Prieto Garcia , Judith Prieto Mendez , Eliazar Aquino Torres ,

Download Full PDF Pages: 08-42 | Views: 59 | Downloads: 17 | DOI: 10.5281/zenodo.11408567

Volume 7 - October 2023 (10)

Abstract

Carbons activated from lignocellulosic residues by pyrolysis and chemical activation by microwaves and evaluating adsorbent capacity with methylene blue were objectives of the work. Optimum pyrolysis conditions: 400 ºC, 30 min, 2 g of precursor, N2 flow of 150 cm3N2/min and heating rate of 20 ºC/min, yields of 33% and %C of 44-68%. Carbons with anionic surface charges, megaporous structures and less active surfaces for adsorption. Optimum conditions for chemical activation by microwaves: 200 W, 4 min, 60% H3PO4 and 200 cm3N2/min, yields 72-96%, with %C 61-68%. Carbons with larger active surfaces, highly developed mesoporous structures, and a greater number of active sites. Chemisorption, limiting step of the process. Microwave radiation produced specific effects on the surface chemistry, increased C/O ratio, decreased functional groups with acidic oxygen, giving basic activated carbons, effective for methylene blue adsorption

Keywords

optimization, activated carbons, Agave salmiana, isotherms, methylene blue

References

i.        L.P. Correa-Cuevas, E. Hernández-Baltazar, E. Revista Mexicana de Ciencias Farmacéuticas, 2011. 42(4):6-25. http://www.redalyc.org/articulo.oa?id=57956612001.

ii.      R. Hoseinzadeh, W. M. A. Wan Daud, J. N. Sahu, and A. Arami. Journal of Analytical and Applied Pyrolysis, 2013. 100: 1-11. https://doi.org/10.1016/j.jaap.2012.12.019.

iii.    T.M. Aislabi, I. Abustan, M.A. Ahmad, A.A. Foul. Journal of Chemical Technology and Biotechnology, 2013. 88: 1183-1190. https://doi.org/10.1002/jctb.4028-

iv.    J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E. G. Calvo, J.M. Bermúdez, Fuel Processing Technology, 2010. 91: 1-8. https://doi.org/10.1016/j.fuproc.2009.08.021.

v.      Q.S. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu. Applied Surface Science, 2010. 256: 3309–3315. https://doi.org/10.1016/j.apsusc.2009.12.025.

vi.    Z.Y. Zhong, Q. Yang, X.M. Li, K. Luo, Y. Liu, G.M. Zeng. Industrial Crops and Products, 2012. 37: 178-185. https://doi.org/10.1016/j.indcrop.2011.12.015.

vii.  Q. Gao, H. Liu, C. Cheng, K. Li, J. Zhang, C. Zhang, Y. Li, Y. Powder Technology, 2013. 249: 234-240. https://doi.org/10.1016/j.powtec.2013.08.029.

viii.K.Y. Foo, B.H. Hameed, Bioresource Technology, 2011. 102: 9814-9817. https://doi.org/10.1016/j.biortech.2011.07.102.

ix.    O.P. Junior, A.L. Cazetta, R.C. Gomes, E.O. Barizão, I.P.A. Souza, A.C. Martins, T. Asefa, V.C. Almeida, Journal of Analytical and Applied Pyrolysis, 2014. 105:166-176. https://doi.org/10.1016/j.jaap.2013.10.015.

x.      R.H. Hesas, A. Arami-Niya, W.M.A. Daud, J.N. Sahu, Journal of Analytical and Applied Pyrolysis, 2013. 104: 176-184. https://doi.org/10.1016/j.jaap.2013.08.006.

xi.    M.J. Ahmed, S.K.  Theydan. Journal of Analytical and Applied Pyrolysis, 2014. 105: 199-208. http://dx.doi.org/10.1016%2Fj.jaap.2013.11.005.

xii.  K.Y. Foo, B.H. Hameed. Desalination and Water Treatment, 2012. 41: 72-78. https://doi.org/10.1080/19443994.2012.664680.

xiii.L. Huang, Y. Sun, W. Wang, Q. Yue, T. Yang, T. Chemical Engineering Journal, 2011. 171: 1446-1453. https://doi.org/10.1016/j.cej.2011.05.041.

xiv.V.O. Njoku, K.Y. Foo, M. Asif, B.H. Hameed, B. H. Chemical Engineering Journal, 2014. 250: 198-204. https://doi.org/10.1016/j.cej.2014.03.115.

xv.  Y. Gokce, Z. Aktas.  Applied Surface Science, 2014. 313: 352-359. https://doi.org/10.1016/j.apsusc.2014.05.214.

xvi.V.O. Njoku, K.Y. Foo, B.H. Hameed, B. H. Chemical Engineering Journal, 2013. 215-216: 383-388. https://doi.org/10.1016/j.cej.2012.10.068.

xvii.                      S.S.A. Syed-Hassan, M.S. Md Zaini. Korean Journal of Chemical Engineering, 2016. 33: 2502-2512. https://doi.org/10.1007/s11814-016-0072-z.

xviii.                    Z. Loloide, M. Mozaffarian, M. Solieman, N. Asassian. Korean Journal of Chemical Engineering, 2017. 34, 366–375. https://doi.org/10.1007/s11814-016-0266-4.

xix.ASTM Standard D3173. Satandard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA. 2017

xx.  ASTM Standard D3174. Standard Test Method for Ash in the Analysis Sample of Coaland Coke from Coal. ASTM International, West Conshohocken, PA. 2020.

xxi.ASTM Standard D3175. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA. 2020.

xxii.                      ASTM Standard D3172. Standard Practice for Proximate Analysis of coal and coke. ASTM International, West Conshohocken, PA. 2021.

xxiii.                    A.P. Ramírez, S. Giraldo, E. Flórez, N. Acelas. Revista Colombiana de Química, 2016. 46 (1): 33-41. https://doi.org/10.15446/rev.colomb.quim.v46n1.62851.

xxiv.                    D. Pathania, S. Sharma, P. Singh, Arabian Journal of Chemistry, 2017. 10: S1445-S1451. https://doi.org/10.1016/j.arabjc.2013.04.021.

xxv.                      B.H. Hameed, A.L. Ahmad, K.N.A. Latiff.  Dyes and Pigments, 2007. 75: 143-149. https://doi.org/10.1016/j.dyepig.2006.05.039.

xxvi.                    B. Ponce-Lira, E.M. Otazo, E. Reguera, O.A. Acevedo-Sandoval, F. Prieto-García, C.A. González-Ramírez. International Journal of Environmental Science and Technology. 2017. 14(6), 1181-1196. https://doi.org/10.1007/s13762-016-1234-6.

xxvii.                  A. Kundu, B.S. Gupta, M.A. Hashim, G. Redzwan. Journal of Cleaner Production, 2015. Volume 105, 15, 420-427. https://doi.org/10.1016/j.jclepro.2014.06.093.

xxviii.                L.B. Abhang, M. Hameedullah. Procedia Engineering, 2012. 38: 40-48, https://doi.org/10.1016/j.proeng.2012.06.007.

xxix.                    C. Nieto-Delgado, J.R. Rangel-Méndez. Preparation of Carbon Materials from Lignocellulosic Biomass (Eds.  E. Rufford, D. Hulicova-Jucakova, J. Zhu). Green Carbon Materials. Advanced and Aplications. 2013. U. S. Taylor & Francis Group, 29. https://doi.org/10.1201/b15651.

xxx.                      A.B. Namazi, D.G. Allen, C.Q. (2016). The Canadian Journal of Chemical Engineering, 2016. 94: 1262-1268. https://doi.org/10.1002/cjce.22521.

xxxi.                    X. Ma, F. Ouyang. Applied Surface Science, 2013. 268: 566-570. https://doi.org/10.1016/j.apsusc.2013.01.009.

xxxii.                  M.A. Ahmad-Zaini, N.Z. Mohammad-Sabri, M.J. Kamaruddin, Y.K. Yeow. International Journal of Materials Science and Engineering, 2015. 3: 301-309. https://doi.org/10.17706/ijmse.2015.3.4.301-309.

xxxiii.                M. Tripathi, J.N. Sahu, P. Ganesan. Renewable and Sustainable Energy Reviews, 2016. 55: 467-481. https://doi.org/10.1016/j.rser.2015.10.122.

xxxiv.                C. Nieto-Delgado, M. Terrones, J.R. Rangel-Mendez.  Biomass and Bioenergy, 2011. 35: 103-112. https://doi.org/10.1016/j.biombioe.2010.08.025.

xxxv.                  O. Ioannidou, A. Zabaniotou. Renewable and Sustainable Energy Reviews, 2007. 11(9): 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013.

xxxvi.                S.N. Azizi, A.R. Dehnavi, A. Joorabdoozha. Materials Research Bulletin, 2013. 48(5): 1753-1759. https://doi.org/10.1016/j.materresbull.2012.12.068.

xxxvii.              Y. Shen, P. Zhao, Q. Shao. Microporous and Mesoporous Materials, 2014. 188: 46-76. https://doi.org/10.1016/j.micromeso.2014.01.005.

xxxviii.            X. Duan, C. Srinivasakannan, X. Wang, F. Wang, X. Liu. Journal of the Taiwan Institute of Chemical Engineers, 2016.  62:132-139. https://doi.org/10.1016/j.jtice.2016.01.022.

xxxix.                F. Conti, A. Majerus, V. Di Noto, C. Korte, W. Lehnert, D. Stolten. Phys. Chem. Chem. Phys., 2012, 14, 10022–10026. https://juser.fz-juelich.de/record/21243/files/FZJ-21243.pdf.

xl.    S. Honary and F. Zahir. (2013). Tropical Journal of Pharmaceutical Research, 2013. 12 (2): 255-264. http://dx.doi.org/10.4314/tjpr.v12i2.19.

xli.  P. Chingombe, B. Saha., R.J. Wakeman. Carbon, 2005. 43: 3132-3143. https://doi.org/10.1016/j.carbon.2005.06.021.

xlii.C.H. Voon, B.Y. Lim, S.C.B. Gopinath, H.S. Tan, V.C.S. Tony, M.K. Md Arshad, K.L. Foo,U. Hashim. Conf. Series: Materials Science and Engineering, 2016. 160:1-7. https://doi.org/10.1088/1757-899X/160/1/012057.

xliii.                      C.S.T. Voo, H.V. Chun, C.L. Chang, Y.L. Bee, S.B.G. Subash, L.F. Kai, K.M.A. Mohd, R.R. Abdul, H. Uda, N.N. Mohd, A.D. Yarub. Materials Research, 2017. 20(6):1658-1668. http://dx.doi.org/10.1590/1980-5373-MR-2017-0277.

xliv.                      C. Nieto-Delgado. Production of activated carbon from agave salmiana bagasse and its modification to remove arsenic from water. Tesis de doctorado. Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México, 2010.

Cite this Article: