Auto-toxicity of Sorghum (Sorghum bicolor, L.) in Seedling and Vegetative Growth
Author(s)
Nanik Setyowati , Uswatun Nurjanah , Yunita Efrianti ,
Download Full PDF Pages: 28-38 | Views: 61 | Downloads: 21 | DOI: 10.5281/zenodo.11423954
Abstract
Sorghum (Sorghum bicolor L.) is a cereal plant that can support food in Indonesia because it contains sufficient nutrients. In addition, sorghum has potential as a vegetable herbicide because it has allelochemical compounds of phenolic groups such as cyanogenic (dhurin) and sorgoleone, which can inhibit weed growth. This study aimed to obtain the optimum concentration of sorghum allelochemicals on sorghum's germination and vegetative growth inhibition and determine the Inhibitory Concentration (IC50). The research was carried out in the Agronomy Laboratory and the greenhouse of the Faculty of Agriculture, Bengkulu University, Indonesia. The design used in this study was a completely randomized design (CRD) with a single factor. The factors tested were the herbicide concentration of sorghum (C), namely C1 = 0%, C2 = 2.5%, C3 = 5%, C4 = 7.5%, and C5 = 10%. Each treatment was repeated five times so that 25 experimental units were obtained. Each experimental unit consists of two petridishes and two polybags. The data obtained were analyzed statistically using Analysis of Variance (ANOVA) at a significance level of F 5%. Variables that had a significant effect were further tested for Orthogonal Polynomials, and to determine the IC50, the data obtained were analyzed using regression analysis. The study's results showed sorghum bioherbicide inhibits seedling growth as evidenced by short primary roots, malformed sprouts, twisted plumules, swelling and short cotyledons, a small number of leaves, and stunting at concentrations ranging from 2.5% to 10%. The IC50 value of in vitro sorghum bioherbicide is 5.85 for the normal seedling percentage.
Keywords
allelochemical, allelopathy, bioherbicide, sustainable agriculture, weed control
References
Cheema, Z.A., and Khaliq, A. 2000. Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi-arid region of Punjab. Agriculture, Ecosystems & Environment. 79(2-3): 105-112.
Cheng, F., Cheng, Z., Meng, H., and Tang, X. 2016. The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression. Frontiers in Plant Science. 7: 1199.
Dayan. 2006. Factors modulating the levels of the allelochemical sorgoleone in sorghum bicolor. Planta, 224(2): 339-46.
Einhellig, F.A. 1995. Mechanism of Action of Allelochemicals in Allelopathy. In allelopathy Chapter 7, pp 96-116. DOI: 10.1021/bk-1995-0582.ch007.
El-Rokiek, K.G., El-Masry, R.R., Messiha, N.K., and Ahmed, S.A. 2010. The allelopathic effect of mango leaves on the growth and propagative capacity of purple nutsedge (Cyperus rotundus L.). Journal of American Science. 6(9): 151-159.
Franco, F.H.S., Machado, Y., Takahashi, J.A., Karam, D., and Garcia, Q.S. 2011. Quantification of sorgoleone in sorghum extracts and roots under different storage periods. Planta Daninha. 29:953-962.
Gardner, F.P., Pearce, R.B., and Mitchell, R.L. 2017. Physiology of crop plants. Scientific Publishers.
Gulzar, A., Siddiqui, M.B., and Bi, S. 2016. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma. 253: 1211-1221.
Haugland, E., and Brandsaeter, L. O. 1996. Experiments on bioassay sensitivity in the study of allelopathy. Journal of Chemical Ecology, 22: 1845-1859.
Herdiansyah, A., Mutakin, J., and Tauhid, A. 2020. Efikasi dan berbagai konsentrasi tiga jenis herbisida terhadap gulma pada pertanaman jagung manis (Zea mays saccharata Sturt). Jurnal Agroteknologi dan Sains. 3(2): 110-121.
Jesudas, A., Kingsley, J., and Ignacimuthu. 2015. Sorgoleone from sorghum bicolor as a potent bioherbicide. Research Journal of Recent Sciences. 3 : 32-36
Kurniasih, B., and Wulandhany, F. 2009. Penggulungan daun, pertumbuhan tajuk dan akar beberapa varietas padi gogo pada kondisi cekaman air yang berbeda. Agrivita. 31(2), 118-128.
Kristanto, B.A., Sukamto, B., Nuraini and Suyanti, E.Y. 2003. Alelopati alang-alang (Imperata cylindrical L. Beauv.) dan teki (Cyperus rotundus L.) pada
perkecambahan dan pertumbuhan berbagai tanaman graminae dan legum. J. Pastura. 7(2) : 48-54.
McCown, B. H., and Wattimena, G. A. 1987. Field performance of micropropagated potato plants. In Potato (pp. 80-88). Berlin, Heidelberg: Springer Berlin Heidelberg.
Mubeen, K., Shehzad, M., Sarwar, N., Rehman, H.U., Yasir, T.A., Wasaya, A., and Alahmadi, T.A. 2021. The impact of horse purslane (Trianthema portulacastrum L.) infestation on soybean [Glycine max (L.) Merrill] productivity in northern irrigated plains of Pakistan. Plos one, 16(9), e0257083.
Nicollier, F.G., Daniel, T.F., and Alonzo. 1983. Biological activity of dhurrin and other compounds from johnson grass (Sorghum halepense). Journal Agriculture Food Chemistry. 31(4):744-748.
Nielsen, L. J., Stuart, P., Picmanova, M., Rasmussen, S., Olsen, C.E., Harholt, J., Moller, B.L., and Bjarnholt, N. 2016. Dhurrin metabolism in the developing grain of Sorghum bicolor (L) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genomics, 17 (1): 10-21
Nurjanah, U., Yudono, P., and Suyono, A. T. 2015. Pertumbuhan gulma padi sawah pada berbagai takaran alelokimia kulit buah jengkol [Pithecellobium jiringa (Jack) Prain Ex King]. Akta Agrosia, 18(2): 63-71.
Randhawa, M.A., Cheema, Z.A., and Ali, M.A. 2012. Allelopathic effect sorghum water extract on the germination and seedling growth of Thianthema portulacastru. International Journal of Agriculture and Biological, 4(3): 384.
Sitanggang, A.F. 2018. Prospek alleopati tanaman sorghum bicolor sebagai salah satu metode pengendalian gulma. Skripsi. Program Sarjana Universitas Bengkulu. Bengkulu.
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z. 2020. Effect of swamp irrigation pattern and sorghum extract concentration on sorghum seed sprout. Advances in Biological Sciences Research, Vol. 14 Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020). https://www.atlantis-press.com/proceedings/kobicinc-20/125958183
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z.. 2021a Penghambatan Perkecambahan Akibat Aplikasi Ekstrak dari Tanaman Utama dan Ratun Sorgum (Sorghum bicolor L.) yang Diproduksi di Lahan Rawa. Prosiding Seminar Nasional Lahan Suboptimal ke-9 Tahun 2021, Palembang 20 Oktober 2021. pp. 426-434. http://conference.unsri.ac.id/index.php/lahansuboptimal/article/view/2422
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z. 2021c. Sorghum germination inhibition using its water extract cultivated in swampland with different irrigation patterns. International e-Conference on Sustainable Agriculture and Farming System. IOP Conf. Series: Earth and Environmental Science 694 (2021) 012027. doi:10.1088/1755-1315/694/1/012027. https://iopscience.iop.org/article/10.1088/1755-1315/694/1/012027/meta
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z. 2021b. The inhibition of seed germination treated with water extract of sorghum (Sorghum bicolor, L.) cultivated in histosols. International Journal of Agricultural Technology 2021Vol. 17(6):2385-2402. http://www.ijat-aatsea.com/pdf/v17_n6_2021_November/25_IJAT_17(6)_2021_Susilo,%20E.(15).pdf
Susilo, E., Setyowati, N., Nurjanah, U., Pujiwati, H. and Riwandi. 2022. Potensi Ekstrak Air Tanaman Sorgum (Sorghum bicolor L.) dari Tanaman Utama, Ratun, dan Organnya yang Diproduksi di Lahan Rawa Sebagai Bioherbisida. Prosiding Seminar Nasional Pertanian Pesisir (SENATASI) Jurusan Budidaya Pertanian Fakultas Pertanian Universitas Bengkulu Bengkulu, 21 Juni 2022. Vol. 1 No.1 Tahun 2022.. https://www.researchgate.net/publication/366862633_POTENTIAL_OF_RATUN_ORGANS_OF_FERMENTED_SORGUM_S
Susilo, E., Setyowati, N., Nurjanah, U., Riwandi and Muktamar, Z. 2023. Inhibition of seed germination under water extracts of sorghum (Sorghum bicolor L.) and its ratoon cultivated in swamp land. International Journal of Agricultural Technology 2023 Vol. 19(3):1337-1346 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) (Q4). http://www.ijat-aatsea.com/pdf/v19_n3_2023_May/36_IJAT_19(3)_2023_Susilo,%20E.(22).pdf
Urbanova, T., and Leubner‐Metzger, G. 2016. Gibberellins and seed germination. Annual Plant Reviews, Volume 49: Gibberellins, The, 253-284.
Weston, L.A., Alsaadawi I.S., and Baerson, S.R. 2013. Sorghum allelopathic from ecosystem to molecule. J. Chem Ecol. 39(2):142-153.
Valcheva, E., Popov, V., Marinov-Serafimov, P., Golubinova, I., Nikolov, B., Velcheva, I., and Petrova, S. 2017. Allelopathic effect of some weed species on germination and initial development of Lactuca sativa. In VIII International Scientific Agriculture Symposium," Agrosym 2017", Jahorina, Bosnia and Herzegovina, October 2017. Book of Proceedings (pp. 170-175). Faculty of Agriculture, University of East Sarajevo.
Xuan, T.D., Minh, T.N., Trung, K.H., and Khanh, T.D. 2016. Allelopathic potential of sweet potato varieties to control weeds: Imperata cylindrica, Bidens pilosa and Ageratum conyzoides. Allelopathy J, 38, 41-54.
Cite this Article: