Optimising Sampling Design with Semivariogram for Vegetation Survey of Derived Savannah, Ogun State, Nigeria

Author(s)

Oluseun. Bamidele Banjo , Daniel Abiodun Akintunde-Alo , Peter Oluwagbemiga Ige ,

Download Full PDF Pages: 09-19 | Views: 60 | Downloads: 20 | DOI: 10.5281/zenodo.11470620

Volume 8 - April 2024 (04)

Abstract

Vegetation survey is useful for biodiversity conservation and management. Sampling design strategies oftentimes fail to capture the heterogeneous vegetation structure of area being studied due to cost and time constraint.  The study aimed to determine the optimum sampling design for vegetation assessment in the study area by characterizing spatial structure and identifying extent of spatial correlation in data points.  Hypothetical sampling scenarios of low, medium and high density random and transect sample plots of (3 x 3 km) were laid on Normalised Difference Vegetation Index (NDVI) from Landsat 8 Operational Land Imager (OLI) satellite imagery of the study area. NDVI values were extracted for the respective sampling scenarios.  Data were subjected to descriptive statistics and fitted to spherical, exponential and Gaussian’s semivariogram models.  Best fitted models were evaluated by Root Mean Square Error (RMSE) values.  Nugget, sill and range parameters of the best fitted semivariogram models described the spatial structure of the vegetation cover in the study area.  Therefore, the parameter estimates guided the selection of medium density random sample plots and low density transect-laid sample plots as the optimized sampling design most suitable for vegetation survey in derived savannah ecosystem of Ogun State, Nigeria.

Keywords

Vegetation survey; semivariogram models; NDVI; sampling designs; spatial structure

References

        i.            Adedeji, G. A., and Aiyeloja, A. A. (2014). Preference and suitability of Nigerian grown

Gmelina arborea Linn. Roxb. and Vitex doniani sweet wood for beekeeping in Imeko, Nigeria. International Journal of Scientific and Engineering Research, 1484-1493.

      ii.            Adepitan, J. O., Falayi, E. O., and Ogunsanwo, F. O. (2017). Confirmation of climate change in southwestern Nigeria through analysis of rainfall and temperature variations over the region. Covenant Journal of Physical and Life Sciences.

    iii.            Akintuyi, A. O., Fasona, M. J., Ayeni, A. O., and Soneye, A. S. (2021). Land use/land cover and climate change interaction in the derived savannah region of Nigeria. Environmental Monitoring and Assessment, 193(12), 848.

    iv.            Allen, D. W. (2016). GIS tutorial 2: spatial analysis workbook. ESRI Press.

      v.            Atkinson, P. M. and Lewis, P. (2000) Geostatistical classification for remote sensing: an

introduction. Computers & Geosciences, v. 26, n. 4, p. 361–371.

    vi.            Blanchet, F. G., Legendre, P., Maranger, R., Monti, D. and Pepin, P. (2011).  Modeling the effect of directional spatial ecological processes at different scales. Oecologia, 166, 357-368.

  vii.            Biswas, A., & Si, B. C. (2013). Model averaging for semivariogram model parameters. Advances in Agrophysical Research, 4, 81-96.

viii.            Guy-Casimir, D K., Yao, A C., Koffi, K J., Traore, A S., and Koné, M. (2021). Afforestation in

Response to Thermal Change in the Forest-Savannah Transition of the Lamto Scientific Reserve, Côte d'Ivoire.Retrieved on Dec 17th, 2021 from https://scite.ai/reports/10.33904/ejfe.978520

    ix.            Meresa, E. and Gebrewhid, Y. (2019). Application of GIS and Remote Sensing to Analyse Land

Use Land Cover Change Detection and Vegetation Dynamics Using Multi-temporal Satellite Images; The Case of Mariamdehan Kebele, Tigray Region, Northern Ethiopia. Retrieved on 29 March, 2019 from https://scite.ai/reports/10.9734/ajgr/2019/v2i230079

      x.            Muhoko, E., Wasseige, C. D. and Cauwer, V D. (2020). Assessing land cover change in

Namibia's Kavango East region: a multi-date object approach. Retrieved on 21 July, 2020 from https://scite.ai/reports/10.19182/bft2020.344.a31897

    xi.            OGMF. (2004). Forest reserves in Ogun State. Retrieved April 18, 2020, from Ogun State

Ministry of Forestry: http://ogunministryof forestry.org.

  xii.            Ogundele, F. O., Odewunmi, S. G., and Ganniy, B. (2013). Maphometric description of gullies developing on coastal plain formation around Yewa South and Ipokia in Ogun State

South-West Nigeria. Journal of Geography and Geology, 5(1), 126 - 137.

xiii.            Oluwalana, S. A. (1997). An economic assessment of the existing Teak and Gmelina plantation in Ogun State, Nigeria. Nigeria Journal of Forestry, 27, 40-47.

xiv.            Jaakkola, A., Hyyppä, J., Yu, X., Kukko, A., Kaartinen, H., Liang, X. and Wang, Y. (2017).

Autonomous collection of forest field reference -The outlook and a first step with UAV laser scanning. Remote sensing, 9(8), 785.

  xv.            Lemenkova, P. (2015). Analysis of Landsat NDVI time series for detecting degradation of vegetation. In Geoecology and Sustainable Use of Mineral Resources. From Science to Practice. Proceedings of 3rd International Conference of Young Scientists. Belgorod State University (BelSU), Ed. AN Petin, PV Goleusov, EI Makaseeva (pp. 11-13).

xvi.            Liang, X., Wang, Y., Jaakkola, A., Kukko, A., Kaartinen, H., Hyyppä, J. and Liu, J. (2015).

Forest data collection using terrestrial image-based point clouds from a handheld camera compared to terrestrial and personal laser scanning. IEEE transactions on Geoscienceand Remote Sensing, 53(9), 5117-5132.

xvii.            Pardo-Igúzquiza, E. and Dowd, P. A. (2013). Comparison of inference methods for estimating semivariogram model parameters and their uncertainty: The case of small datasets. Computers & Geosciences, 50, 154-164.

xviii.            Rabiou, H., Issaharou-Matchi, I., Adjonou, K., Segla, K N., Bationo, B A., Kokou, K., and Mahamane, A. (2021). Plant formations of Pterocarpus erinaceus Poir. in Sudanian and Sahelian zones. Retrieved on 1 January, 2021 from https://scite.ai/reports/10.22161/ijeab.66.10

xix.            R Core Team. (2016). A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria.

  xx.            Sanusi, M. M. and Ayinde, I. A. (2013). Profitability of pepper production in derived savannah zone of Ogun State, Nigeria. IJAFS, 4(2), 401-410.

xxi.            Silveira, E. M. D. O., Mello, J. M. D., Acerbi, F. W., Reis, A. A. D., Withey, K. D. and Ruiz, L.A (2017). Characterizing landscape spatial heterogeneity using semivariogram parameters derived from NDVI images. Cerne, 23, 413-422.

xxii.            Strohbach, B. J., and Sheuyange, T. P. (2001). Vegetation survey of Namibia. Journal of the Namibia Scientific Society, 49, 93-124.

xxiii.            Van Groenigen, J. W. (2000). The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, 97(3-4), 223-236.

xxiv.            Wallace, C. S., Watts, J. M. and Yool, S. R. (2000). Characterizing the spatial structure of

vegetation communities in the Mojave Desert using geostatistical techniques. Computers & Geosciences, 26(4), 397-410.

xxv.            Wagenseil, H. and Samimi, C. (2006). Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: Results from a dry savannah environment in Namibia. International Journal of Remote Sensing, 27(16), 3455-3471.

xxvi.            Woodcock, C. E.; Strahler, A. H.; Jupp, D. L. B. (1988) The use of variograms in remote sensing: I. Scene Models and simulated images. Remote Sensing of Environment 25 (3) 323–348

xxvii.            Yilangai, R M., Onoja, J., Saha, S., Elisha, E B., Manu, S A., Barshep, Y. and Molokwu‐Odozi,M. (2023). Diversity, abundance, and conservation status of woody species in a West African dry forest. Retrieved on 23 January from https://scite.ai/reports/10.1111/csp2.12888.

Cite this Article: