Elucidation of Ralstonia solanacearum Phylotypes causing Bacterial Wilt in Solanum lycopersicum (Cobra tomatoes) through Modified Agar Medium (MAM) and Multiplex-PCR.

Author(s)

Forkwa Etienne Yong , Eneke Esoeyang Tambe Bechem , Egbe Enow Andrew ,

Download Full PDF Pages: 15-34 | Views: 23 | Downloads: 8 | DOI: 10.5281/zenodo.14795035

Volume 8 - August 2024 (08)

Abstract

Tomatoes are major staples in global diets and are frequently threatened by the virulent soil-borne pathogen, Ralstonia solanacearum, which causes devastating bacterial wilt and poses a significant risk to food security. This study was designed to elucidate the Ralstonia solanacearum phylotypes associated with bacterial wilt in Solanum lycopersicum in Buea, Cameroon. One hundred and fifty symptomatic tomato plants were collected from five tomatoes producing sites in Buea (Bwitingi, Ewonda, Great Soppo, Molyko, and Muea). A modified agar medium (MAM) was used to minimize the presence of contaminating pathogens, followed by nutrient agar to further purify the 45 isolates. Subsequently, the isolates underwent biochemical tests (Kliger iron agar and Gram staining), pathogenicity tests, genomic DNA extraction, and Polymerase Chain Reaction (Multiplex PCR) using primers that targeted 16S and 23S rRNA. The symptoms observed included wilted and yellow leaves, discoloured stems, and adventitious roots. Spearman correlations showed the strongest associations between discoloured xylem and wilted leaves (r = 0.43) and the weakest between discoloured xylem and yellow leaves (r = 0.13). Kliger iron agar, Gram stain, and pathogenicity tests confirmed the presence of the pathogen, but no significant differences were found amongst the 45 isolates (P = 0.05), except for stem streaming (H= 11.82, P = 0.019). Genomic DNA was successfully extracted from all 45 isolates, and effectively amplified during PCR, yielding distinct bands of 372, 144, 213, and 91 base pairs, indicating the presence of phylotypes II, I, IV, and III, respectively, in the isolates. These findings provide valuable insights into the pathogen's diversity and identity in Cameroon, providing clues to stakeholders in the management of bacterial wilt disease in the tomato secto

Keywords

Ralstonia solanacearum, phylotypes, Modified agar medium, nutrient agar, Primers, PCR, and Gel electrophoresis

References

        i.            Afanga, Y. A., Bechem, E. E., Egbe, E. A. (2022). Exploring tomato farmers perceptions with a view to produce local F1 hybrid in Buea, Cameroon. International Journal of Agriculture and Biological Sciences., 1&2, 58–67.

      ii.            Asif, S., Khan, M., Waqar Arshad, M., & Shabbir, M. I. (2021). PCR Optimization for Beginners: A Step by Step Guide. Research in Molecular Medicine, 9(2), 81–102. https://doi.org/10.32598/rmm.9.2.1189.1

    iii.            Ayana, G. (2016). Bacterial wilt caused by Ralstonia solanacearum in Ethiopia : A Review. Internationational Journal of Phytopathology, 05(03), 107–119.

    iv.            Ayana, G., Fininsa, C., Ahmed, S., & Wydra, K. (2011). Effects of Soil Amendment on Bacterial Wilt Caused by Ralstonia solanacerum and Tomato Yields in Ethiopia. Journal of Plant Protection Research, 51(1). https://doi.org/10.2478/v10045-011-0013-0

      v.            Ayankojo, I. T., Morgan, K. T., Kadyampakeni, D. M., & Liu, G. D. (2020). Tomato growth, yield, and root development, soil nitrogen and water distribution as affected by nitrogen and irrigation rates on a florida sandy soil. HortScience, 55(11), 1744–1755. https://doi.org/10.21273/HORTSCI15177-20

    vi.            Bekeko, Z., Fininsa, C., Hussien, S., Hussien, T., & Wegari, D. (2020). Resistance of some selected maize genotypes to gray leaf spot disease (Cercospora zeae-maydis ) in Ethiopia. Journal of Genes and Environmental Resources Conservation., 6(1), 1–13.

  vii.            Chen, M. C., Wang, J. P., Zhu, Y. J., Liu, B., Yang, W. J., & Ruan, C. Q. (2019). Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. Journal of Applied Microbiology, 126(5), 1519–1529. https://doi.org/10.1111/jam.14213

viii.            Conti, V., Parrotta, L., Romi, M., Del Duca, S., & Cai, G. (2023). Tomato Biodiversity and Drought Tolerance: A Multilevel Review. International Journal of Molecular Sciences, 24(12), 1–21. https://doi.org/10.3390/ijms241210044

    ix.            Dahal, D., Pich, A., Braun, H. P., & Wydra, K. (2010). Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: A proteomic approach. Plant Molecular Biology, 73(6), 643–658. https://doi.org/10.1007/s11103-010-9646-z

      x.            Egbe, A. E., Solange, M., Soupi, N., Nkede, F., & Ndogho, A. P. (2023). Growth , yield and yield characteristics of three pepper cultivars to fertilizers application in the Mount Cameroon Region. Journal of Agricultural Chemistry and Environment, 12, 188–205. https://doi.org/10.4236/jacen.2023.122015

    xi.            Elsayed, T. R., Jacquiod, S., Nour, E. H., Sørensen, S. J., & Smalla, K. (2020). Biocontrol of cbacterial wilt disease through complex nteraction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Frontiers in Microbiology, 10, 2835. https://doi.org/http://10.3389/fmicb.2019.02835

  xii.            Gerszberg, A., & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83(2), 175–198. https://doi.org/10.1007/s10725-017-0251-x

xiii.            Gupta, A., Kamalachandran, D., Longchar, B., & Senthil-Kumar, M. (2018). Impact of soil moisture regimes on wilt disease in tomatoes: Current understanding. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants, 2005, 73–82. https://doi.org/10.1016/B978-0-12-813066-7.00005-X

xiv.            Hossain, M. F., Billah, M., Ali, M. R., Parvez, M. S. A., Zaoti, Z. F., Hasan, S. M. Z., Hasan, M. F., Dutta, A. K., Khalekuzzaman, M., Islam, M. A., & Sikdar, B. (2021). Molecular identification and biological control of Ralstonia solanacearum from wilt of papaya by natural compounds and Bacillus subtilis: An integrated experimental and computational study. Saudi Journal of Biological Sciences, 28(12), 6972–6986. https://doi.org/10.1016/j.sjbs.2021.07.069

  xv.            Isidro-Requejo, L. M., Márquez-Ríos, E., Del Toro-Sánchez, C. L., Ruiz-Cruz, S., Valero-Garrido, D., & Suárez-Jiménez, G. M. (2023). Tomato plant extract (Lycopersicon esculentum) obtained from agroindustrial byproducts and its antifungal activity against Fusarium spp. Frontiers in Sustainable Food Systems, 7, 1323489. https://doi.org/http://10.3389/fsufs.2023.1323489

xvi.            Jiang, J. F., Li, J. G., & Dong, Y. H. (2013). Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. European Journal of Plant Pathology, 136(3), 547–555. https://doi.org/10.1007/s10658-013-0186-7

xvii.            Kamalakannan, A., Krishnan, S., & Aundy, K. (2019). Characterization of Ralstonia solanacearum causing tomato bacterial wilt disease in Tamil Nadu and selection of potential antagonistic Bacillus spp . for its management. Plant  Disease  Research, 33(2), 191–201.

xviii.            Khatun, P., & Das, S. K. (2020). Medicinal and Versatile Uses of an Amazing, Obtainable and Valuable Grass: Cynodon dactylon. International Journal of Pharmaceutical and Medicinal Research Journal Homepage: Www.Ijpmr.Org Review Article, 8(5), 1–11.

xix.            Kim, B. S., French, E., Caldwell, D., Harrington, E. J., & Iyer-Pascuzzi, A. S. (2015). Bacterial wilt disease: Host resistance and pathogen virulence mechanisms. Physiological and Molecular Plant Pathology, 95, 37–43. https://doi.org/10.1016/j.pmpp.2016.02.007

  xx.            Kim, M., Nguyen, T. T. P., Ahn, J. H., Kim, G. J., & Sim, S. C. (2021). Genome-wide association study identifies QTL for eight fruit traits in cultivated tomato (Solanum lycopersicum L.). Horticulture Research, 8(1). https://doi.org/10.1038/s41438-021-00638-4

xxi.            Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845

xxii.            Konan, N., Patrice Houphouet, Y., Konaté, I., Diallo Mamadou, S., Bakayoko, N., Ouattara, A., Sélastique Akaffou, D., & Mergeai, G. (2020). Breeding for resistance to tomato bacterial wilt: Identification of potential sources of genetic resistance by field evaluation of 28 tomato cultivars in Daloa, Côte d’Ivoire. Journal of Agricultural and Crop Research, 8(12), 305–313. https://doi.org/10.33495/jacr_v8i12.20.206

xxiii.            Kumar, J., & Doshi, A. (2018). Pathogenicity test and convenient inoculation method of Xanthomonas axonopodis pv. vignaeradiatae caused leaf spot of green gram. International Journal of Current Microbiology and Applied Sciences, 7(04), 152–166. https://doi.org/10.20546/ijcmas.2018.704.017

xxiv.            Lee, J., & Park, T.-H. (2016). Isolation and characterization of bacteriophages infecting Ralstonia solanacearum from potato fields. Research in Plant Disease, 22(4), 236–242. https://doi.org/10.5423/rpd.2016.22.4.236

xxv.            Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 1–5. https://doi.org/10.3791/3923

xxvi.            Li, N., He, Q., Wang, J., Wang, B., Zhao, J., Huang, S., Yang, T., Tang, Y., Yang, S., Aisimutuola, P., Xu, R., Hu, J., Jia, C., Ma, K., Li, Z., Jiang, F., Gao, J., Lan, H., Zhou, Y., … Yu, Q. (2023). Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics, 55(5), 852–860. https://doi.org/10.1038/s41588-023-01340-y

xxvii.            Lowe-Power, T. M., Jacobs, J. M., Ailloud, F., Fochs, B., Prior, P., & Allen, C. (2016). Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on tobacco. MBio, 7(3), 1–12. https://doi.org/10.1128/mBio.00656-16

xxviii.            Lowe-Power, T. M., Khokhani, D., & Allen, C. (2018). How Ralstonia solanacearum Exploits and Thrives in the Flowing Plant Xylem Environment. Trends in Microbiology, 26(11), 929–942. https://doi.org/10.1016/j.tim.2018.06.002

xxix.            Mamphogoro, T. P., Babalola, O.O., and Aiyegoro, O. A. (2020). Sustainable management strategies for bacterial wilt of sweet peppers (Capsicum annuum ) and other Solanaceous crops. Journal of Applied Microbiology, 129, 496–508. https://doi.org/10.1111/jam.14653

xxx.            Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

xxxi.            Martinez, S., Gabriel, J. L., Allende-Montalbán, R., San-Juan-heras, R., & Delgado, M. D. M. (2022). The Application of a Bio-Stabilized municipal solid waste-based fertilizer for buckwheat production. Agriculture (Switzerland), 12(6), 1–17. https://doi.org/10.3390/agriculture12060776

xxxii.            Mayele, J. M., & Abu, F. R. (2023). Determining the effects of selected organic fertilizer on growth and yields of tomato (Lycopersicon esculentum: Var. Rio Grande Tomatoes) in Mundri West County, Western Equatoria State, South Sudan. Agricultural Sciences, 14(09), 1343–1374. https://doi.org/10.4236/as.2023.149089

xxxiii.            Mazumder, R., Hussain, A., Rahman, M. M., Phelan, J. E., Campino, S., Abdullah, A., Clark, T. G., & Mondal, D. (2023). Genomic and functional portrait of multidrug-resistant, hydrogen sulfide (H2S)-producing variants of Escherichia coli. Frontiers in Microbiology, 14(July), 1–13. https://doi.org/10.3389/fmicb.2023.1206757

xxxiv.            Nkoa, R., Owen, M. D. K., & Swanton, C. J. (2015). Weed abundance, distribution, diversity, and community analyses. Weed Science, 63(Special ssue), 64–90. https://doi.org/10.1614/ws-d-13-00075.1

xxxv.            Omotayo, O. E., & Eegunranti, A. M. (2023). Effect of soil solarization on tomato (Solanum lycopersicum L.) growth and impact on native microbial diversity of farm soil in Nigeria. Egyptian Journal of Biological Pest Control, 33(1). https://doi.org/10.1186/s41938-023-00653-8

xxxvi.            Osipitan, O. A., Yahaya, I., & Adigun, J. A. (2018). Economics of weed management methods as influenced by row-spacing in Cowpea. Journal of Agricultural Science, 10(2), 98. https://doi.org/10.5539/jas.v10n2p98

xxxvii.            Paray, A. A., Singh, M., & Amin Mir, M. (2023). Gram staining: A brief review. International Journal of Research and Review, 10(9), 336–341. https://doi.org/10.52403/ijrr.20230934

xxxviii.            Paudel, S., Dobhal, S., Alvarez, A. M., & Arif, M. (2020). Taxonomy and phylogenetic research on Ralstonia solanacearum species Complex : A complex pathogen with extraordinary economic consequences. Pathogens, 9(886), 1–26.

xxxix.            Pawaskar, J., Joshi, M. S., Navathe, S., Agale, R. C., & Sawant Konkan Krishi Vidyapeeth, B. (2014). Physiological and biochemical characters of Ralstonia solanacearum. International Journal of Research in Agricultural Sciences, 1(6), 2348–3997.

    xl.            Pendi, F. H., & Hussain, H. (2020). Suitability of variuos buffers for genomic DNA extraction of pinneapple (Ananas comosus) var. MD2. Journal of Sustainability Science and Management, 15(8), 90–101. https://doi.org/10.46754/JSSM.2020.12.008

  xli.            Petropoulos, S. A., Fernandes, Â., Xyrafis, E., & Polyzos, N. (2020). The optimization of nitrogen fertilization regulates crop performance and quality of processing Tomato (Solanum lycopersicum L. cv. Heinz 3402). Agronomy, 10(715), 19.

xlii.            Planas-Marquès, M., Kressin, J. P., Kashyap, A., Panthee, D. R., Louws, F. J., Coll, N. S., & Valls, M. (2020). Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. Journal of Experimental Botany, 71(6), 2157–2171. https://doi.org/10.1093/jxb/erz562

xliii.            Razia, S., Chowdhury, M. S. M., Aminuzzaman, F. M., Sultana, N., & Islam, M. (2021). Morphological, pathological, biochemical and molecular characterization of Ralstonia solanacearum isolates in Bangladesh. American Journal of Molecular Biology, 11(04), 142–164. https://doi.org/10.4236/ajmb.2021.114012

xliv.            Safni, I., Cleenwerck, I., Vos, P. De, Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex : proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R . syzygii strains as Ralstonia syzygii subsp . syzygii subsp . nov .,. International Journal of Systematic and Evolutionary Microbiology, 64, 3087–3103. https://doi.org/10.1099/ijs.0.066712-0

xlv.            Schacht, T., Unger, C., Pich, A., & Wydra, K. (2011). Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. Plant Physiology and Biochemistry, 49(4), 377–387. https://doi.org/10.1016/j.plaphy.2011.02.001

xlvi.            Sharma, D. K. (2018). Morphological and biochemical characterization of Ralstonia solanacearum (smith) in brinjal (Solanum melongena L.) in Rajasthan (India). Advances in Plants & Agriculture Research, 8(3), 284–288. https://doi.org/10.15406/apar.2018.08.00328

xlvii.            Sharma, D., & Singh, Y. (2019). Characterization of Ralstonia solanacearum isolates using biochemical, cultural, molecular methods and pathogenicity tests. Journal of Pharmacognosy and Phytochemistry, 8(4), 2884–2889. https://www.phytojournal.com/archives/2019/vol8issue4/PartAU/8-4-392-512.pdf

xlviii.            She, X., Yu, L., Lan, G., Tang, Y., & He, Z. (2017). Identification and genetic characterization of Ralstonia solanacearum species complex isolates from Cucurbita maxima in China. In Frontiers in Plant Science (Vol. 8). https://doi.org/10.3389/fpls.2017.01794

xlix.            Shibzukhov, Z. G., Bagov, A., Shibzukhova, Z., Khantsev, M., & Akbar, I. (2021). Tomato productivity depending on mineral nutrition and irrigation regimes in the conditions of film greenhouses in the mountain zone of the KBR. E3S Web of Conferences, 262. https://doi.org/10.1051/e3sconf/202126201032

        l.            Silva, C. J., Van Den Abeele, C., Ortega-Salazar, I., Papin, V., Adaskaveg, J. A., Wang, D., Casteel, C. L., Seymour, G. B., & Blanco-Ulate, B. (2021). Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. Journal of Experimental Botany, 72(7), 2696–2709. https://doi.org/10.1093/jxb/eraa601

      li.            Su, L., Zhang, L., Nie, D., Kuramae, E. E., Shen, B., & Shen, Q. (2020). Bacterial tomato pathogen Ralstonia solanacearum invasion modulates rhizosphere compounds and facilitates the cascade effect of fungal pathogen Fusarium solani. Microorganisms, 8(6), 1–16. https://doi.org/10.3390/microorganisms8060806

    lii.            Tambe, A. A., Mfombep, P. M., Julie, D. T., Egbe, L. E., Tabot, P. T., Dengiz, O., & Agbor, D. T. (2024). Tomato varieties superiority assessment under organic and inorganic (granular and foliar) fertilization in sandy clay soil. Eurasian Journal of Soil Science inorganic ( granular and foliar ) fertilization in sandy clay soil. 13(1), 1–9.

  liii.            Tessema, L., Seid, E., Woldegiorgis, G., & Sharma, K. (2020). Current status of bacterial wilt (Ralstonia solanacearum) disease in major seed potato (Solanum tuberosum L.) growing areas of Ethiopia. Journal of Plant Pathology & Microbiology, 11(5), 1–8. https://doi.org/10.35248/2157-7471.20.11.497

  liv.            Toukam, G. M. S., Gilles, C., Wicker, E., Guilbaud, C., Kahane, R., Allen, C., & Prior, P. (2009). Broad diversity of Ralstonia solanacearum strains in cameroon. Plant Disease, 93(11), 1123–1130. https://doi.org/10.1094/PDIS-93-11-1123

    lv.            Tripodi, P., D’Alessandro, A., & Francese, G. (2023). An integrated genomic and biochemical approach to investigate the potentiality of heirloom tomatoes: Breeding resources for food quality and sustainable agriculture. Frontiers in Plant Science, 13(January). https://doi.org/10.3389/fpls.2022.1031776

  lvi.            Umadevi, U., Narasimha Murthy, K., Gayathri Devi, N., & Srinivas, C. (2021). Isolation and identification of bacterial wilt causing Ralstonia solanacearum from groundnut (Arachis hypogaea L.). International Journal of Agricultural Technology, 17(2), 767–780.

lvii.            Umesha, S., & Avinash, P. (2015). Multiplex PCR for simultaneous identification of Ralstonia solanacearum and Xanthomonas perforans. 3 Biotech, 5(3), 245–252. https://doi.org/10.1007/s13205-014-0223-z

lviii.            Vazquez-Vazquez, C., Gallegos-Robles, M. A., Salazar-Sosa, E., Orona-Castillo, I., Garcia-Hernandez, J. L., Trejo-Escareño, H. I., & Mendoza-Retana, S. S. (2015). Manure solarization from cattle, goat and poultry and its effect on survival of Salmonella spp. Journal of Pure and Applied Microbiology, 9(1), 151–158.

  lix.            Wang, Z., Luo, W., Cheng, S., Zhang, H., Zong, J., & Zhang, Z. (2023). Ralstonia solanacearum – A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. Frontiers in Plant Science, 14(February), 1–12. https://doi.org/10.3389/fpls.2023.1141902

    lx.            Winans, K., Brodt, S., & Kendall, A. (2020). Life cycle assessment of California processing tomato: An evaluation of the effects of evolving practices and technologies over a 10-year (2005–2015) timeframe. International Journal of Life Cycle Assessment, 25(3), 538–547. https://doi.org/10.1007/s11367-019-01688-6

  lxi.            Włodarczyk, K., Smolińska, B., & Majak, I. (2023). The antioxidant potential of Tomato plants (Solanum lycopersicum L.) under nano-ZnO treatment. International Journal of Molecular Sciences, 24(14), 11833. https://doi.org/10.3390/ijms241411833

lxii.            Yin, J., Zhang, Z., Guo, Y., Chen, Y., Xu, Y., Chen, W., Shao, Y., Yu, Y., Zhu, L., Chen, L., & Ruan, L. (2022). Precision probiotics in agroecosystems: multiple strategies of native soil microbiotas for conquering the competitor Ralstonia solanacearum. MSystems, 7(3). https://doi.org/10.1128/msystems.01159-21

lxiii.            Yusuf, Y. M., Madukwe, D. K., & Kebede, F. (2023). Establishing phosphorus critical values for tomato (Solanum lycopersicum) fertilization with phosphate fertilizers on the Sudan savanna soils using three soil phosphorus extraction methods and field experimentation in Kano State, Nigeria. Frontiers in Agronomy, 5(August), 1–10. https://doi.org/10.3389/fagro.2023.1181045

Cite this Article: