Review of the Relationship between Food Insecurity (Nutrients Imbalance) and Non-Communicable Diseases (NCDs)

Author(s)

Dhaba Mengesha Adula ,

Download Full PDF Pages: 20-33 | Views: 37 | Downloads: 19 | DOI: 10.5281/zenodo.14845378

Volume 8 - December 2024 (12)

Abstract

The Glob today is facing an ‘‘epidemic’’ of diet-related non-communicable diseases (DR-NCDs), along with widely prevalent under-nutrition resulting in substantial socioeconomic burden. The aim of this paper is to review the relationship between nutrients and energy metabolism and implications for non-communicable diseases (NCDs) in different parts of the world’s so as to understand optimal choices for healthy diets for the prevention of NCDs. The literature search was carried out in PubMed and Google Scholar search up to December 2019. A manual search for all other references, national and medical databases was also carried out. A decreasing intake of coarse cereals, pulses, fruits and vegetables, an increasing intake of meat products and salt, coupled with declining levels of physical activity due to rapid urbanization have resulted in escalating levels of obesity, atherogenic dyslipidemia, subclinical inflammation, metabolic syndrome, type 2 diabetes mellitus, and coronary heart disease in different parts of the world. Studies also suggest that adverse perinatal events due to maternal nutritional deprivation may cause low-birth weight infants, which, coupled with early childhood ‘‘catch-up growth’’, leads to obesity in early childhood, thus predisposing to NCDs later in life. In view of rapidly increasingly imbalanced diets, a multisectoral preventive approach is needed to provide balanced diets to pregnant women, children and adults, and to maintain a normal body weight from childhood onwards, to prevent the escalation of DR-NCDs.

Keywords

obesity, overweight, diabetes, coronary heart disease, diet, energy metabolism, metabolic syndrome

References

1)      A Road Map for Scaling-Up Nutrition (SUN) (2010) (http://www.unscn.org/files/Announcements/Other_announcements/FINAL_SUN_Road_Map_FINAL_dn.pdf

2)      A.B. Ballinger, M.L. Clark, l-Phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating, Metabolism 43 (1994) 735–738.

3)      A.C. Shin, R.L. Townsend, L.M. Patterson, et al., “Liking” and “wanting” of sweet and oily food stimuli as affected by high-fat diet-induced obesity, weight loss, leptin, and genetic predisposition, Am. J. Physiol.: Regul. Integr. Comp. Physiol. 301 (2011) R1267–R1280.

4)      A.E. Elson, C.D. Dotson, J.M. Egan, et al., Glucagon signaling modulates sweet taste responsiveness, FASEB J. 24 (2010) 3960–3969.

5)      A.J. Brown, S.M. Goldsworthy, A.A. Barnes, et al., The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem. 278 (2003) 11312–11319.

6)      A.P. Liou, Y. Sei, X. Zhao, et al., The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to Lphenylalanine in acutely isolated intestinal I cells, Am. J. Physiol. Gastrointest. Liver Physiol. 300 (2011) G538–G546.

7)      Acosta, M.D. Hurtado, O. Gorbatyuk, et al., Salivary PYY: a putative bypass to satiety, PLoS ONE 6 (2011) e26137.

8)      C.Cartoni, K. Yasumatsu, T. Ohkuri, et al., Taste preference forfatty acids is mediated by GPR40 and GPR120, J. Neurosci. 30 (2010) 8376–8382.

9)      C.D. Dotson, M.C. Geraedts, S.D. Munger, Peptide regulators of peripheral taste function, Semin. Cell Dev. Biol. 24 (3) (2013) 232–239.

10)  C.J. Newman, E. Verdin, Ketone bodies as signaling metabolites, Trends Endocrinol. Metab. 25 (1) (2014) 42–52.

11)  D.C. Haid, C. Jordan-Biegger, P. Widmayer, et al., Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human, Front. Physiol. 3 (2012) 65–80.

12)  G. Pang, Q. Chen, Z. Hu, et al., The “five flavor conciliation”, and nutrient balance and their signal transductions, Food Sci. 33 (13) (2012) 1–20.

13)  G. Tolhurst, H. Heffron, Y.S. Lam, et al., Short-chain fatty acids stimulate glucagonlike peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes 61 (2012) 364–371.

14)  G.A. Bewick, Bowels control brain: gut hormones and obesity, Biochem. Med. 22 (3) (2012) 283–297.

15)  G.T. Wong, K.S. Gannon, F. Robert, Transduction of bitter and sweet taste by gustducin, Nature 381 (1996) 796–800.

16)  Government of India, Central Bureau of Health Intelligence, Ministry of Health and Family Welfare. Health Information of India 2005. Available from: http:// cbhidghs.nic.in/chap1.asp (accessed 15 June 2010).

17)  Greenberg, G.P. Smith, The controls of fat intake, Psychosom. Med. 58 (1996) 559–569.

18)  H.A. Overton, A.J. Babbs, S.M. Doel, et al., Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small molecule hypophagic agents, Cell Metab. 3 (2006) 167–175.

19)  H.M. Cox, I.R. Tough, A.M. Woolston, et al., Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses, Cell Metab. 11 (2010) 532–542.

20)  H.R. Berthoud, M. Kressel, H.E. Raybould, et al., Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing, Anat. Embryol. 191 (1995) 203–212.

21)  Haid, P. Widmayer, H. Breer, Nutrient sensing receptors in gastric endocrine cells, J. Mol. Histol. 42 (2011) 355–364.

22)  I.M. Brennan, N.D. Luscombe-Marsh, R.V. Seimon, et al., Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men, Am. J. Physiol. Gastrointest. Liver Physiol. 303 (2012) G129–G140.

23)  Inui, A. Asakawa, C.Y. Bowers, et al., Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ, FASEB J. 18 (2004) 439–456.

24)  K. Iwatsuki, M. Nomura, A. Shibata, et al., Generation and characterization of T1R2-LacZ knock-in mouse, Biochem. Biophys. Res. Commun. 402 (2010) 495–499.

25)  K.E. Smith, M.W. Walker, R. Artymyshyn, et al., Cloned human and rat galanin GALR3 receptors Pharmacology and activation of G-protein inwardly rectifyingK+ channels,J.Biol.Chem. 273 (1998) 23321–23326.

26)  L. Dickson, K. Finlayson, VPAC and PAC receptors: from ligands to function, Pharmacol. Therapeut. 121 (2009) 294–316.

27)  L.L. Baggio, D.J. Drucker, Biology of incretins: GLP-1 and GIP, Gastroenterology 132 (2007) 2131–2157.

28)  Laugerette, P. Passilly-degrace, B. Patris, et al., CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions, J. Clin. Invest. 115 (2005) 3177–3184.

29)  M. Cordier-bussat, C. Bernard, F. Levenez, et al., Peptonesstimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene, Diabetes 47 (1998) 1038–1045.

30)  M. Laplante, D.M. Sabatini, mTOR signaling in growth control and disease, Cell 149 (2012) 274–293.

31)  M.S. Engelstoft, K.L. Egerod, B. Holst, et al., A gut feeling for obesity: TM sensors on enteroendocrine cells, Cell Metab. 8 (2008) 447–449.

32)  Martin, P. Passilly-Degrace, M. Chevrot, et al., Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity, J. Lipid Res. 53 (2012) 2256–2265.

33)  Martin, Y.K. Shin, C.M. White, et al., Vasoactive intestinal peptidenull mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression, Diabetes 59 (2010) 1143–1152.

34)  N. Chaudhari, S.D. Roper, The cell biology of taste, J. Cell Biol. 190 (2010) 285–296.

35)  N. Hass, K. Schwarzenbacher, H. Breer, T1R3 is expressed in brush cells and ghrelin producing cells of murine stomach, Cell Tissue Res. 339 (2010) 493–504.

36)  N. Mitro, P.A. Mak, L. Vargas, et al., The nuclear receptor LXR is a glucose sensor, Nature 445 (2006) 219–223.

37)  N.P. Darcel, A.P. Liou, D. Tomé, et al., Activation of vagal afferents in the rat duodenum by protein digests requires PepT1, J. Nutr. 135 (2005) 1491–1495.

38)  N.V. Dipatrizio, D. Piomelli, The thrifty lipids: endocannabinoids and the neural control of energy conservation, Trends Neurosci. 20 (2012) 1–9.

39)  National Sample Survey Organization, Ministry of Statistics and Program Implementation, Government of India. Report of the NSS 61st Round (July 2004– June 2005). Available from: http://www.mospi.gov.in/ nsso_test1.htm (accessed 2 January 2010).

40)  Nelson, J. Chandrashekar, M.A. Hoon, et al., An amino-acid taste receptor, Nature 416 (2002) 199–202.

41)  O.J. Mace, J. Affleck, N. Patel, et al., Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2, J. Physiol. 582 (2007) 379–392.

42)  O.J. Mace, N. Lister, E. Morgan, et al., An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine, J. Physiol. 587 (2009) 195–210.

43)  Oetting, P.M. Yen, New insights into thyroid hormone action, Best

44)  P. Degrace-Passilly, P. Besnard, CD36 and taste of fat, Curr. Opin. Clin. Nutr. Metab. Care 15 (2012) 107–111.

45)  P. Wellendorph, H. Bräuner-Osborne, Molecular basis for amino acid sensing by family C G-protein-coupled receptors, Br. J. Pharmacol. 156 (2009) 869–884.

46)  P.L. Brubaker, The glucagon-like peptides: pleiotropic regulators of nutrient homeostasis, Ann. N. Y. Acad. Sci. 1070 (2006) 10–26.

47)  Planning Commission, Government of India. Eleventh Five Year Plan: 2007–12, Volume 1: Inclusive Growth. Available from: http://planningcommission.nic.in/plans/ planrel/fiveyr/11th/11_v1/11th_vol1.pdf (accessed 30 June 2010).

48)  Pract. Res. Clin. Endocrinol. Metab. 21 (2007) 193–208.

49)  R.H. Unger, A.D. Cherrington, Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover, J. Clin. Invest. 122 (2012) 4–12.

50)  R.W. Gelling, P.M. Vuguin, X.Q. DU., Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass, Am. J. Physiol.: Endocrinol. Metab. 297 (2009) E695–E707.

51)  Reimann, G. Tolhurst, F.M. Gribble, G-protein-coupled receptors in intestinal chemosensation, Cell Metab. 15 (2012) 421–431.

52)  S. Choi, M. Lee, A.L. Shiu, et al., Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes, Am. J. Physiol. Gastrointest. Liver Physiol. 292 (2007) G98–G112.

53)  S. Edfalk, P. Steneberg, H. Edlund, Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion, Diabetes 57 (2008) 2280–2287.

54)  S. Herness, F.L. Zhao, The neuropeptidesCCK and NPY and the changing view of cell-to-cell communication in the taste bud, Physiol. Behav. 97 (2009) 581–591.

55)  S. Janssen, I. Depoortere, Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol. Metab. 24 (2) (2013) 92–100.

56)  S. Janssen, J. Laermans, P.J. Verhulst, et al., Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 2094–2099.

57)  Scaling Up Nutrition, A framework for Action (September 2010) (http://www.unscn.org/files/Annual_Sessions/2009_Brussels/SUNframework_sept2010.pdf)

58)  T. Sato, Y. Nakamura, Y. Shiimura, et al., Structure, regulation and function of ghrelin, J. Biochem. 151 (2012) 119–128.

59)  T. Tanaka, T. Yano, T. Adachi, et al., Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells, Naunyn Schmiedebergs Arch. Pharmacol. 377 (2008) 515–522.

60)  T.E. Finger, B. Böttger, A. Hansen, et al., Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 8981–8986.

61)  T.W. Moody, T. Ito, N.J. Osefo, et al., PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies, Curr. Opin. Endocrinol. Diabetes Obes. 18 (2011) 61–67.

62)  The World Bank. World Development Report 2008: Agriculture for Development. Available from: http:// econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/ EXTRESEARCH/EXTWDRS/EXTWDR2008/0,con tentMDK:21410054~menuPK:3149676~pagePK:64167689~piPK:64167673~theSitePK:2795143,00.html (accessed 3 January 2010).

63)  W. Meyerhof, C. Batram, C. Kuhn, et al., The molecular receptive ranges of human TAS2R bitter taste receptors, Chem. Senses 35 (2010) 157–170.

64)  WHO Set of recommendations on the marketing of foods and non-alcoholic beverages to children (2010)

65)  Y. Akiba, C. Watanabe, M. Mizumori, et al., Luminal l-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats, Am. J. Physiol. Gastrointest. Liver Physiol. 297 (2009) G781–G791.

Cite this Article: