Non-Antibiotic Strategies for Tackling Anti-Microbial Resistance (AMR) in Aquaculture

Author(s)

Muhammad Rizwan Ali , Mahnoor Fatima ,

Download Full PDF Pages: 61-75 | Views: 13 | Downloads: 4 | DOI: 10.5281/zenodo.17340816

Volume 9 - August 2025 (08)

Abstract

Aquaculture has merged as rapidly growing sector essential for food security. Due to the excessive use of antibiotics to control diseases in fish antimicrobial resistance has emerged resulting significant risks to both fish and human health. In this article we have explored some non-antibiotic strategies to limit or eradicate the usage of antibiotics. We discussed role of probiotics which stimulate disease resistance, immune system, digestion and growth in fish. Omics based approaches are important to improve our understanding of mechanism of antibiotic resistance and immune defense techniques used by bacteria. CRISPR based approaches provides excellent chance to eliminate antibiotic resistant pathogens through precise gene modification. Bacteriphages, having rapid growth rate, exceptional abilities to tackle zoonotic infections, host specific action, non-toxicity to surround biodiversity and adversely eliminating concerned pathogen, act as an excellent alternative to antibiotics. Metal nanoparticles also act as an impressive strategy to mitigate antimicrobial resistance by disrupting the structure of cell membrane and pathogenic proteins. Extracts from different medicinal plants and herbs are also effective against aquatic pathogen’s resistance. All these strategies reduce our dependence on antibiotics, mitigate antimicrobial resistance and enhance aquaculture production

Keywords

Non-antibiotic strategies, antibiotic alternatives, AMR in aquaculture.

References

Abdel-Aziz, M., M. Bessat, A. Fadel and S. Elblehi. 2020. Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological and antiparasitic activities. Aquac. Int. 28:947-963.

Aich, N., N. Ahmed, A. Paul. 2018. Issues of antibiotic resistance in aquaculture industry and its way forward. Int. J. Curr. Microbiol. Appl. Sci. 7:26-41.

Almeida, A., A. Cunha, N.C. Gomes, E. Alves, L. Costa and M.A. Faustino. 2009. Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Marine drugs. 7:268-313.

Ashouri, S., S. Keyvanshokooh, A.P. Salati, S.A. Johari and H. Pasha-Zanoosi. 2015. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 446:25-29.

Assane, I.M., K.S. Gozi, G.M.R. Valladao and F. Pilarski. 2019. Combination of antimicrobials as an approach to reduce their application in aquaculture: Emphasis on the use of thiamphenicol/florfenicol against Aeromonas hydrophila. Aquaculture. 507:238-245.

Bansemir, A., M. Blume, S. Schroder and U. Lindequist. 2006. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture. 252:79-84.

Bhat, R., R. Tandel and P.K. Pandey. 2022. Alternatives to antibiotics for combating the antimicrobial resistance in aquaculture. Indian J. Anim. Health. 61:01-18.

Bhat, R.A.H. and I. Altinok. 2023. Antimicrobial Resistance (AMR) and Alternative Strategies for Combating AMR in Aquaculture. Turk. J. Fish Aquat. Sci. 23: TRJFAS24068

Bhujel, R.C., D.K. Jha and A.K. Anal. 2020. Effects of probiotic doses on the survival and growth of hatchlings, fry and advanced fry of Rohu (Labeo rohita Hamilton). J. appl. Aquac. 32:34-52.

Bondad‐Reantaso, M.G., B. MacKinnon, I. Karunasagar, S. Fridman, V. Alday‐Sanz, E. Brun, M. Le Groumellec, A. Li, W. Surachetpong, I. Karunasagar and B. Hao. 2023. Review of alternatives to antibiotic use in aquaculture. Rev. Aquac. 15:1421-1451.

Bragg, R.R., C.M. Meyburgh, J.Y. Lee and M. Coetzee. 2018. Potential treatment options in a post-antibiotic era. In Infectious Diseases and Nanomedicine III: Second International Conference (ICIDN-2015), Dec. 15-18, 2015, Kathmandu, Nepal. Springer Singapore. pp. 51-61.

Castillo, D., G. Higuera, M. Villa, M. Middelboe, I. Dalsgaard, L. Madsen and R.T. Espejo. 2012. Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold-water disease in salmonids. J. Fish Dis. 35:193-201.

Castillo, D., R.H. Christiansen, I. Dalsgaard, L. Madsen and M. Middelboe. 2015. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factors. Appl. Environ. microbiol. 81:1157-1167.

Chatterjee, S.H.A.L.D.A.R. and S. Haldar. 2012. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J. Mar. Sci. Res. Dev. S. 1:1-7.

Chauhan, A. and R. Singh. 2019. Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis. 77:99-113.

Chen, L., J. Fan, T. Yan, Q. Liu, S. Yuan, H. Zhang and Y. Ma. 2019. Isolation and characterization of specific phages to prepare a cocktail preventing Vibrio sp. Va-F3 infections in shrimp (Litopenaeus vannamei). Front. Microbiol. 10:2337.

Cheng, T.C., K.S. Yao, N. Yeh, C.I. Chang, H.C. Hsu, F. Gonzalez C.Y. Chang. 2011. Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater. Thin Solid Films. 519:5002-5006.

Chernov, V.M., O.A. Chernova, A.A. Mouzykantov, L.L. Lopukhov and R.I. Aminov. 2019. Omics of antimicrobials and antimicrobial resistance. Expert Opin. drug Dis. 14:455-468.

Chong, C.M., A.G. Murthy, C.Y. Choy K.S. Lai. 2020. Phytotherapy in aquaculture: Integration of endogenous application with science. J. Environ. Biol. 41:1204-1214.

Dar, A.H., N. Rashid, I. Majid, S. Hussain and M.A. Dar. 2020. Nanotechnology interventions in aquaculture and seafood preservation. Crit. Rev. Food Sci. Nutrition. 60:1912-1921.

Dawood, M.A., E.M. Moustafa, M.S. Gewaily, S.E. Abdo, M.F. AbdEl-Kader, M.S. SaadAllah and A.H. Hamouda. 2020. Ameliorative effects of Lactobacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat. Toxicol. 219:105377.

De Abreu, V.A., J. Perdigao. and S. Almeida. 2021. Metagenomic approaches to analyze antimicrobial resistance: an overview. Front. Genet. 11:575592.

Deekshit, V. K., B. Maiti, B. Krishna Kumar, A. Kotian, G. Pinto, M.G. Bondad‐Reantaso and I. Karunasagar. 2023. Antimicrobial resistance in fish pathogens and alternative risk mitigation strategies. Rev Aquacult. 15:261-273.

del Valle, J.C., M.C. Bonadero. and A.V. Fernandez-Gimenez. 2023. Saccharomyces cerevisiae as probiotic, prebiotic, synbiotics, postbiotics and parabiotics in aquaculture: An overview. Aquaculture. 569:739342.

Dien, L.T., T.P.H. Ngo, T.V. Nguyen, P. Kayansamruaj, K.R. Salin, C.V. Mohan, C. Rodkhum and H.T. Dong. 2023. Non‐antibiotic approaches to combat motile Aeromonas infections in aquaculture: Current state of knowledge and future perspectives. Rev. Aquac. 15:333-366.

Durand, G.A., D. Raoult and G. Dubourg. 2019. Antibiotic discovery: history, methods and perspectives. Int. J. Antimicrob. Agents. 53:371-382.

Edeh, I.C. and C.I. Nsofor. 2023. Utilization of antibiotics in aquaculture; present status and future alternatives in the post covid-19 pandemic era. Biosci. J. 11:57-70.

Eirna-Liza, N., H.A. Hassim, C.C. Min, F. Syukri and M. Karim. 2018. The duration of protection conferred by garlic on African catfish (Clarias gariepinus) against Aeromonas hydrophila. J. Aquac. Res. Dev. 9:2.

Endley, S., L. Lu, E. Vega, M.E. Hume and S.D. Pillai. 2003. Male-specific coliphages as an additional fecal contamination indicator for screening fresh carrots. J. food Protect. 66:88-93.

Evangelista, A.G., J.A.F. Correa, A.C.S.M. Pinto and F.B. Luciano. 2022. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance–a review. Crit. Rev. Food Sci. Nutr. 62:5267-5283.

Garza, M., C.V. Mohan, L. Brunton, B. Wieland and B. Häsler, B. 2022. Typology of interventions for antimicrobial use and antimicrobial resistance in aquaculture systems in low-and middle-income countries. Int. J. Antimicrob. Agents. 59:106495.

Ghetas, H.A., N. Abdel-Razek, M.S. Shakweer, M.M. Abotaleb, B.A. Paray, S. Ali, E.A. Eldessouki, M.A. Dawood and R.H. Khalil. 2022. Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens. Saudi J. Biol. Sci. 29:1298-1305.

Haenen, O. L., H.T. Dong, T.D. Hoai, M. Crumlish, I. Karunasagar, T. Barkham and M.G. Bondad‐Reantaso. 2023. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev Aquacult. 15:154-185.

Hasan-Uj-Jaman, M., S. Khondoker, J. Ferdaus, M. Tareq, S.S. Ahmed, M.N. Hasan and F. Hasan. 2017. Effects of Achyranthes aspera to the growth performance of Rohu (Labeo rohita). Int. J. Fish Aquat. Stud. 5:109-113.

Hillary, V.E. and S.A. Ceasar. 2023. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol. Biotechnol. 65:311-325.

Hille, F. and E. Charpentier. 2016. CRISPR-Cas: biology, mechanisms and relevance. Philosophical transactions of the royal society. Biol. Sci. 371:20150496.

Hossain, A., M. Habibullah-Al-Mamun, I. Nagano, S. Masunaga, D. Kitazawa and H. Matsuda. 2022. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 1-22.

Jamal, M., T. Hussain, C.R. Das and S. Andleeb. 2015. Isolation and characterization of a Myoviridae MJ1 bacteriophage against multi-drug resistant Escherichia coli. Jundishapur J. Microbiol. 8:e25917

Jamal, M.T., I.A. Abdulrahman, M. Al Harbi and S. Chithambaran. 2019. Probiotics as alternative control measures in shrimp aquaculture: A review. J. Appl. Biol. and Biotechnol. 7:69-77.

Janiszewska, D., M. Szultka-Młynska, P. Pomastowski and B. Buszewski. 2022. “Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int. J. Mol. Sci. 23:9601.

Jayaseelan, C., A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik and K.B. Rao. 2012. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molec. Biomolec. Spectroscopy. 90:78-84.

Jeyavani, J., A. Sibiya, J. Sivakamavalli, M. Divya, E. Preetham, B. Vaseeharan and C. Faggio. 2022. Phytotherapy and combined nanoformulations as a promising disease management in aquaculture: A review. Aquac. Int. 30:1071-1086.

Jovanovic, B., E.M. Whitley, K. Kimura, A. Crumpton, D. Palic. 2015. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ. Pollution. 203:153-164.

Junaid, M., K. Thirapanmethee, P. Khuntayaporn and M.T. Chomnawang. 2023. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals. 16:920.

Kalatzis, P.G., D. Castillo, P. Katharios and M. Middelboe. 2018. Bacteriophage interactions with marine pathogenic vibrios: implications for phage therapy. Antibiotics. 7:15.

Karunasagar, I., M.M., Shivu, S.K. Girisha, G. Krohne and I. Karunasagar. 2007. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture. 268:288-292.

Khairnar, K., M.P. Raut, R.H. Chandekar, S.G. Sanmukh W.N. Paunikar. 2013. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Veteran. Res. 9:1-9.

Khodadadi, E., E. Zeinalzadeh, S. Taghizadeh, B. Mehramouz, F.S. Kamounah, E. Khodadadi, K. Ganbarov, B. Yousefi, M. Bastami and H.S. Kafil. 2020. Proteomic applications in antimicrobial resistance and clinical microbiology studies. Infect. Drug Resist. 13:1785-1806.

Kulkarni, R.R., P.V. Pawar, M.P. Joseph, A.K. Akulwad, A. Sen and S.P. Joshi. 2013. Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles sfttephensi and Culex quinquefasciatus. J. Pest Sci. 86:713-718.

Li, H.Y., D.D. Zhou, R.Y. Gan, S.Y. Huang, C.N. Zhao, A. Shang, X.Y. Xu and H.B. Li. 2021. Effects and mechanisms of probiotics, prebiotics, synbiotics and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients. 13:3211.

Lima, E., R. Guerra, V. Lara, A. Guzman. 2013. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem. Cent. J. 7:1-7.

Liu, Q., Y. Yuan, F. Zhu, Y. Hong and R. Ge. 2018. Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biol. Open. 7:bio035170.

Matsuzaki, S., M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi and S. Imai. 2005. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. infect. Chemother. 11:211-219.

Mayorga-Ramos, A., J. Zuniga-Miranda, S.E. Carrera-Pacheco, C. Barba-Ostria and L.P. Guaman. 2023. CRISPR-Cas-based antimicrobials: design, challenges and bacterial mechanisms of resistance. ACS Infect. Dis. 9:1283-1302.

McCarlie, S.J., L.L. du Preez, J.C. Hernandez, C.E. Boucher and R.R. Bragg. 2023. Transcriptomic signature of bacteria exposed to benzalkonium chloride. Res. Microbiol. 175:104151.

Merril, C.R., D. Scholl and S.L. Adhya. 2003. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2:489-497.

Mohanraju, P., K.S. Makarova, B. Zetsche, F. Zhang, E.V. Koonin and J. Van der Oost. 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 353:aad5147.

Morrison, S. and D.J. Rainnie. 2004. Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture. Can. Tech. Rep. Fish. Aquat. Sci. 2532.

Murugaiyan, J., P.A. Kumar,  G.S. Rao, K. Iskandar, S. Hawser, J.P. Hays and M.B. van Dongen. 2022. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics. 11:200.

Naiel, M. A., S. Ghazanfar, S.S. Negm, M. Shukry and H.M. Abdel-Latif. 2023. Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture–A mini-review. Ann. Anim. Sci. 23:691-701.

Nakai, T., R. Sugimoto, K.H. Park, S. Matsuoka, K.I. Mori, T. Nishioka and K. Maruyama. 1999. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis. Aquat. Organ. 37:33-41.

Nasr-Eldahan, S., A. Nabil-Adam, M.A. Shreadah, A.M. Maher T. El-Sayed Ali. 2021. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquac. Int. 29:1459-1480.

Newaj‐Fyzul, A. and B. Austin. 2015. Probiotics, immunostimulants, plant products and oral vaccines and their role as feed supplements in the control of bacterial fish diseases. J. fish Dis. 38:937-955.

Nik Mohamad Nek Rahimi, N., I. Natrah, J.Y. Loh, F.K. Ervin Ranzil, M. Gina, S.H.E. Lim,  and C.M. Chong. 2022. Phytocompounds as an alternative antimicrobial approach in aquaculture. Antibiotics. 11:469.

Nishimori, E., K. Kita-Tsukamoto and H. Wakabayashi. 2000. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50:83-89.

Nogueira, T. and A. Botelho. 2021. Metagenomics and other omics approaches to bacterial communities and antimicrobial resistance assessment in aquacultures. Antibiotics. 10:787.

Okeke, E.S., K.I. Chukwudozie, R. Nyaruaba, R.E. Ita, A. Oladipo, O. Ejeromedoghene, E.O. Atakpa, C.V. Agu and C.O. Okoye. 2022. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environ. Sci. Pollut. Res. 29:69241-69274.

Paul, J.H. and M.B. Sullivan. 2005. Marine phage genomics: what have we learned? Curr. Opin. Biotechnol. 16:299-307.

Pereira, W.A., C.M.N. Mendonca, A.V. Urquiza, V.P. Marteinsson, J.G. LeBlanc, P.D. Cotter, E.F. Villalobos, J. Romero and R.P. Oliveira. 2022. Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms. 10:1705.

Prakash, J., J.C. Pivin H.C. Swart. 2015. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Adv. Colloid Interface Sci. 226:187-202.

Preena, P.G., T.R. Swaminathan, V.J. Rejish Kumar and I.S. Bright Singh. 2020. Unravelling the menace: detection of antimicrobial resistance in aquaculture. Lett Appl Microbiol. 71:26-38.

Preena, P.G., T.R. Swaminathan, V.J.R. Kumar and I.S.B. Singh. 2020. Antimicrobial resistance in aquaculture: a crisis for concern. Biol. 75:1497-1517.

Rajendiran, A., E. Natarajan and P. Subramanian. 2008. Control of Aeromonas hydrophila infection in spotted snakehead, Channa punctatus, by Solanum nigrum L., a medicinal plant. J. world Aquac. Soc. 39:375-383.

Rao, B.M. and K.V. Lalitha. 2015. Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture. 437:146-154.

Rath, D., L. Amlinger, A. Rath and M. Lundgren. 2015. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochim. Open. 117:119-128.

Richardson, C., R.N. Kelsh and R.J. Richardson. 2023. New advances in CRISPR/Cas-mediated precise gene-editing techniquesDis. Model. Mech. 16:dmm049874.

Roh, H and D. Kannimuthu. 2023. Comparative resistome analysis of Aeromonas species in aquaculture reveals antibiotic resistance patterns and phylogeographic distribution. Environ. Res. 239:117273.

Roy, S., V. Kumar, B.K. Behera, J. Parhi, S. Mohapatra, T. Chakraborty and B.K. Das. 2022 CRISPR/Cas Genome Editing-Can It Become a Game Changer in Future Fisheries Sector? Front. Mar. Sci. 9:924475.

Santos, L and F. Ramos. 2018. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents. 52:135-143.

Sihag, R. C and P. Sharma. 2012. Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. J, Fish. Aquat. Sci. 7:72-103.

Stoica, C and G.  Cox. 2021. Old problems and new solutions: antibiotic alternatives in food animal production. Can. J.  Microbiol. 67:427-444.

Suyamud, B., Y. Chen, Z. Dong, C. Zhao, C and J. Hu. 2023. Antimicrobial resistance in aquaculture: Occurrence and strategies in Southeast Asia. Sci. Total Environ. 167942.

Swain, P., S.K. Nayak, A. Sasmal, T. Behera, S.K. Barik, S.K. Swain, S.S. Mishra, A.K. Sen, J.K. Das and P. Jayasankar. 2014. Antimicrobial activity of metal-based nanoparticles against microbes associated with diseases in aquaculture. World J. Microbiol. Biotechnol. 30:2491-2502.

Tacon, A.G. 2020. Trends in global aquaculture and aquafeed production: 2000–2017. Rev. Fish. Sci. Aquac. 28:43-56.

Tao, S., H. Chen, N. Li and W. Liang. 2022. The application of the CRISPR-Cas system in antibiotic resistance. Infect. Drug Resist. 15:4155-4168.

Torres-Sangiao, E., A.D. Giddey, C. Leal Rodriguez, Z. Tang, X. Liu and N.C. Soares. 2022. Proteomic approaches to unravel mechanisms of antibiotic resistance and immune evasion of bacterial pathogens. Front. Med. 9:850374.

Torres-Sangiao, E., N.C. Soares and X. Liu. 2022. Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens. Front. Med. 9:945264.

Uddin, T.M., A.J. Chakraborty, A. Khusro, B.R.M. Zidan, S. Mitra, T.B. Emran, K. Dhama, M.K.H. Ripon, M. Gajdacs, M.U.K. Sahibzada and M.J. Hossain. 2021. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health. 14:1750-1766.

Vallianou, N., T. Stratigou, G.S. Christodoulatos, C. Tsigalou and M. Dalamaga. 2020. Probiotics, prebiotics, synbiotics, postbiotics and obesity: current evidence, controversies and perspectives. Curr. Obes. Rep. 9:179-192.

Varijakzhan, D., C.M. Chong, A. Abushelaibi, K.S. Lai and S.H.E. Lim. 2020. Middle Eastern plant extracts: An alternative to modern medicine problems. Molecules:1126.

Verdegem, M., A.H. Buschmann, U.W. Latt, A.J. Dalsgaard and A. Lovatelli. 2023. The contribution of aquaculture systems to global aquaculture production. J. World Aquac. Soc. 54:206-250.

Wang, J and Y. Cheng. 2024. Enhancing aquaculture disease resistance: Antimicrobial peptides and gene editing. Rev Aquacult. 16:433-451.

Watts, J. E., H.J. Schreier, L. Lanska and M.S. Hale. 2017. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs. 15:158.

Yosef, I., R. Kiro, S. Molshanski-Mor, R. Edgar and U. Qimron. 2014. Different approaches for using bacteriophages against antibiotic-resistant bacteria. Bacteriophage, 4:19549-54.

Zhao, Y., Q.E. Yang, X. Zhou, F.H. Wang, J. Muurinen, M.P. Virta, K.K. Brandt and Y.G. Zhu. 2021. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. Technol. 51:2159-2196.

Cite this Article: