Methodology Proposal for Evaluation of Vigor in Soybean Seeds by Respiratory Activity

Author(s)

Marlene de Matos Malavasi , Joao Alexandre Lopes Dranski , Ubirajara Contro Malavasi ,

Download Full PDF Pages: 43-52 | Views: 597 | Downloads: 177 | DOI: 10.5281/zenodo.3484481

Volume 3 - August 2019 (08)

Abstract

The respiratory activity is one of the first biological manifestations of vigor loss in seeds. Detecting loss of seed vigor can help to monitor and control seed production by the seed industry. This research aimed to develop and validate a novel method using carbon dioxide concentration to evaluate vigor of Glycine max [(L.) Merrill] seeds. The proposed method measures CO2 released by seeds with infrared through a carrier and exhaustion system in a closed system. Samples of 25 seeds of six seed lots of cultivar CD 2737 RR were incubated at temperatures of 15, 25 and 40 °C. The CO2 released after 1, 3, 6, 9, 12 and 24 h of seed incubation was quantified as well as the percentage of normal seedlings emerged in the field. We calculated the simple correlation coefficients between the two tests. We evaluated the precision and accuracy of the proposed method using 15 seed lots. For the evaluation of the respiratory activity in G. max seeds, we recommend a sample of 25 seeds, incubated at 15 °C for a minimum of 9 h. The method allows to classify seed lots with different levels of vigor and predict the establishment of seedlings in the field. The tested method is appropriated for measuring CO2 as it externalizes precision between successive measurements and agrees with a reference method.

Keywords

Carbon dioxide; Glycine max [(L.) Merrill], infrared spectroscopy, physiological potential of seeds, validation method

References

                   i.                    Association of Official Seed Analysts [AOSA] (2002) Seed Vigor Testing Handbook. AOSA, Lincoln.

ii.                  Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M. and Nonogaki, H.  (2013) Seeds: physiology of development, germination and dormancy. New York, Springer.

iii.                Brasil, Ministério da Agricultura, Pecuária e Abastecimento (2013) Instrução Normativa no 45, de 17 de setembro de 2013. Regulamento técnico geral dos padrões para a produção e a comercialização de sementes de grandes culturas. DOU, 18/09/2013, Seção 1, p. 16-37. 

iv.                 Brasil, Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análise de sementes. Brasília, MAPA/ACS.

v.                   Buckley, W.T. and Huang, J. (2011) An ethanol-based seed vigour assay for canola. Seed Science and Technology 39, 510-526.

vi.                 Costa, J.A., Pires, J.L.F., Thomas, A.L., and Alberton, M. (2002) Variedades de soja diferem na velocidade e capacidade de absorver água. Scientia Agraria 3, 91-96.

vii.               Dantas, B.F., Silva, R.C.B., Ribeiro, R.C. and Aragão, C.A. (2015) Respiration and antioxidant enzymes activity in watermelon seeds and seedlings subjected to salt and temperature stresses. American Journal of Experimental Agriculture 7, 70-77.

viii.             Davis, J.A. (1971) Elementary survey analysis. Englewood, Prentice-Hall.

ix.                 Dode, J., Meneghello, G.E., Timm, F.C., Moraes, D.M. and Peske, S.T. (2013) Teste de respiração em sementes de soja para avaliação da qualidade fisiológica. Ciência Rural 43, 193-198. 

x.                   Dranski, J.A.L., Pinto Júnior, A.S., Herzog, N.F.M., Malavasi, U.C., Malavasi, M.M. and Guimarães, V.F. (2013) Vigor of canola seeds through quantification of CO2 emission. Ciência e Agrotecnologia 37, 229-236.

xi.                 Edelstein, M., Bradford, K.J. and Burger, D.W. (2001) Metabolic heat and CO2 production rates during germination of melon (Cucumis melo L.) seeds measured by microcalorimetry. Seed Science Research 11, 265-272.

xii.               Felinger, A. (1998) Data analysis and signal processing in chromatography. Amsterdam; Oxford, Elsevier.  

xiii.             França Neto, J.B., Krzyzanowski, F.C. and Costa, N.P. (1998) The tetrazolium test for soybean seeds. Londrina, EMBRAPA-CNPSo. 

xiv.             Goel, A., Goel, A.K. and Sheoran, I.S. (2003) Changes in oxidative stress enzymes during artificial ageing in cotton (Gossypium hirsutum L.) seeds. Journal of Plant Physiology 160, 1093-1100.

xv.               International Standard Organization [ISO] (1994) Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method - ISO 5725–2:1994.  Geneva, International Organization for Standardization.

xvi.             Law, S.R., Narsai, R. and Whelan, J. (2014) Mitochondrial biogenesis in plants during seed germination. Mitochondrion 19, 214-221.

xvii.           Nakagawa. J. (1994) Testes de vigor baseados na avaliação das plântulas, pp. 49-85 in Vieira, R.D.; Carvalho, N.M. (Eds) Testes de vigor em sementes. Jaboticabal, FUNEP.

xviii.         Rosental, L., Nonogaki, K. and Fait, A. (2014) Activation and regulation of primary metabolism during seed germination. Seed Science Research 24, 1-15.

xix.             Patanè, C. and Avola, G. (2013) A seed respiration-based index of cold-sensitivity during imbibition in four macrothermal species. Acta Physiologiae Plantarum 35, 911-918.

xx.               Patanè, C., Cavallaro, V., Avola, G. and D'Agosta, G. (2006) Seed respiration of sorghum [Sorghum bicolor (L.) Moench] during germination as affected by temperature and osmoconditioning. Seed Science Research 14, 251-260.

xxi.             Vermeulen, P.H., Fernández-Pierna, J.A., Van Egmond, H.P., Zegers, J., DArdenne, P. and Baeten, V. (2013) Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals. Analytical and Bioanalytical Chemistry 405, 7765-7772.

xxii.           Weitbrecht, K., Müller, K. and Leubner-Metzger, G. (2011) First off the mark: early seed germination. Journal of Experimental Botany 62, 3289-3309.

xxiii.         Xin, X., Tian, Q., Yin, G., Chen, X., Zhang, J., Ng, S. and Lu, X. (2014) Reduced mitochondrial and ascorbate–glutathione activity after artificial ageing in soybean seed. Journal of Plant Physiology 171, 140-147.

Cite this Article: