Pedotransfer Functions for Cation Exchange Capacity, Available Water Holding Capacity and Soil Organic Carbon for Representative Soils of Southern Highland Zone of Tanzania

Author(s)

Johnson Godlove Mtama , C. Lee Burras , Balthazar M. Msanya ,

Download Full PDF Pages: 26-42 | Views: 1378 | Downloads: 442 | DOI: 10.5281/zenodo.2576698

Volume 2 - October 2018 (10)

Abstract

Pedotransfer functions are useful tools in estimating the not easily measured and expensive soil properties. They are especially valuable in settings such as the SHZT where limited direct soil measurements are available. The objective of this study was to develop a series of pedotransfer functions and then evaluate which ones best estimate cation exchange capacity (CEC), available water holding capacity (AWHC) and soil organic carbon (SOC). Data from 20 horizons of four representative pedons was used to evaluate the most predictive properties. Best fit multiple linear regressions were used to obtain relationships and identify property coefficients. Examples of pedotransfer functions developed for the SHZT are %SOC = 0.1*hue-0.03*value-0.034chroma (n = 20, r2 = 0.74), CEC (meq/100g) = 0.44*%clay + 9.6%SOC (n=20, r2 = 0.93), and, AWHC (mm/m) = 14.7%SOC + 0.82%clay + 0.35%silt + 0.51%sand (n=12; r2 = 0.96). All color attributes are for moist samples. The results of predicted CEC, AWHC, and SOC were compared to those measured in the laboratory using the t-test, and the two methods did not differ significantly; two-sided p-value=0.93. These results indicate the promising potential of using the easily measured soil properties and cheap in fiscal terms to estimate the not easily measured soil properties.

Keywords

Pedotransfer function, CEC, AWHC, and SOC. 

References

 i.            Bremmer, J.M and C.S Mulvaney. 1982.  Total nitrogen. In: L.A. Page, R.H. Miller, and D.R. Keeney (Eds.) Methods of soil analysis, Part 2 (2nd Ed.) Agronomy Monograph No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp 595-624.

 ii.            Chapman, H. D. 1965. Cation Exchange Capacity. In: C.A. Black (Ed.) Methods of soil analysis.  Agronomy Monograph No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI.891-901pp.

 iii.            Cornelis, W.M., Ronsyn, J., Van Meirvenne, M. and Hartmann, R., 2001. Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Science Society of America Journal, 65(3), pp.63

iv.            Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R., 1984. A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resource. Research. 20 (6), 682–690.

v.             Eswaran, H., E. Van Den Berg, and P. Reich. 1993. Organic carbon in soils of the world. Soil Science Society of America Journal 57:192-194.

vi.             Fieldes, M., and K. W. Perrot. 1966. The nature of allophane in soils. I. Significance of randomness in pedogenesis. New Zeland Journal of Science 9: 622-632.

vii.             Gupta, S. and Larson, W.E., 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water resources research, 15(6), pp.1633-1635.

 viii.            Hubert, Leirs, Herwig, 2014. Landform and surface attributes for prediction of rodent burrows in the Western Usambara Mountains, Tanzania. Tanzan. J. Health Res. 16 (3). https://doi.org/10.4314/thrb.v16i3.5.

ix.             Jones, R. J., R. Hiederer, E. Rusco, and L. Montanarella. 2005. Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56: 655-671.

x.            Keshavarzi, A., Sarmadian, F., Omran, E.W., Iqbal, M., 2015. A neural network model for estimating soil phosphorus using terrain analysis, Egypt. J. Remote Sens. Space. Sci.https://doi.org/10.1016/j.ejrs.2015.06.004.

xi.            Lakzian, A., Sangani, M.F., Astaraei, A., Fotovat, A., 2013. Estimation and mapping soil organic carbon content using terrain analysis (case study: Mashhad, Iran). J. Water Soil 27 (1), 180–192.

xii.            Lal, R., 2012. World Soils and the Carbon Cycle in Relation to Climate Change and Food Security. Carbon Management and Sequestration Center. The Ohio State University, Columbus (52pp).

xiii.             MacDonald K.B. 1998. Development of pedotransfer functions of southern Ontario soils. Report from greenhouse and processing crops research center, Harrow Ontario. No. 01686-8-0436

xiv.             Mbaga, H.R., Msanya, B.M. and Mrema, J.P. 2017. Pedological characterization of typical soil of Dakawa Irrigation Scheme, Mvomero District, Morogoro Region, Tanzania. International Journal of Current Research Biosciences and Plant Biology 4 (6):77-86.

xv.             Mclean, E.O. 1986. Soil pH and lime requirement.  In: L.A. Page, R.H. Miller, and D.R. Keeney (Eds.) Methods of soil analysis, Part 2 (2nd Ed.) Agronomy Monograph No. vii. American Society of Agronomy and Soil Science Society of America, Madison, WI.  p. 199-223

xvi.            Mdemu, M.V., 2015. Evaluation and Development of Pedotransfer Functions for Estimating Soil Water Holding Capacity in the Tropics: The Case Of Sokoine University of Agriculture Farm in Morogoro, Tanzania. Journal of Geography and Geology, 7(1), p.1.

xvii.            Meliyo, Joel L., Massawe, Boniface H.J., Msanya, Balthazar M., Kimaro, Didas N., Hieronimo, Proches, Mulungu, Loth S., Kihupi, Nganga I., Deckers, Jozef A., Gulinck,

xviii.             Msanya, B.M., Magoggo, J.P. and Otsuka, H. (2002). Development of soil surveys in Tanzania. Pedologist 46:79-88.

xix.             Msanya, B.M., Munishi, J., Amuri, N., Semu, E., Mhoro, L. and Malley, Z., 2016. Morphology, genesis, physico-chemical properties, classification and potential of soils derived from volcanic parent materials in selected Districts of Mbeya Region, Tanzania.

xx.            Mwango, S.B., Wickama, J., Msanya, B.M., Kimaro, D.N., Mbogoni, J.D. and Meliyo, J.L., 2019. The use of pedo-transfer functions for estimating soil organic carbon contents in maize cropland ecosystem in the Coastal Plains of Tanzania. CATENA, 172, pp.163-169.

xxi.             National Soil Service. 1990. Laboratory procedures for routine analysis, 3rd edition. Agricultural Research Institue. Mlingano Tanga, Tanzania. pp. 212

xxii.             Nelson, D.W., and L.E. Sommers. 1982. Total organic carbon. In: L.A. Page, R.H. Miller, and D.R. Keeney (Eds.) Methods of soil analysis, Part 2 (2nd Ed.) Agronomy Monograph No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp. 539-579.

xxiii.             Obiero, J.P., Gumbe, L.O., Omuto, C.T., Hassan, M.A. and Agullo, J.O., 2013. Development of Pedotransfer Functions for Saturated Hydraulic Conductivity. Open Journal of Modern Hydrology, 3(03), p.154.

xxiv.             Obiero, J.P., Gumbe, L.O., Omuto, C.T., Hassan, M.A. and Agullo, J.O., 2013. Development of Pedotransfer Functions for Saturated Hydraulic Conductivity. Open Journal of Modern Hydrology, 3(03), p.154.

xxv.            Pachepsky, Y.A. and Rawls, W.J., 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of America Journal, 63(6), pp.1748-1757.

xxvi.             Pidgeon, J.D., 1972. The measurement and prediction of available water capacity of ferrallitic soils in Uganda. Journal of Soil Science, 23(4), pp.431-441.

xxvii.             Pollacco, J. A. P. 2008. A generally applicable pedotransfer function that estimates field capacity and permanent wilting point from soil texture and bulk density. Canadian Journal of Soil Science 88: 761-774.

xxviii.            Rasoulzadeh, A., 2011. Estimating hydraulic conductivity using pedotransfer functions.In: Elango, Lakshmanan (Ed.), Hydraulic Conductivity - Issues, Determination and Applications. InTech978-953-307-288-3, Available from: http://www.intechopen.com/books/hydraulic-conductivity-issues-determination-and-applications/ estimating-hydraulic-conductivity-using-pedotransfer-functions.

xxix.              Saxton, K. E., W. Rawls, J. S. Romberger, and V. Papendick. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50:1031-1036.

xxx.            Schaap, M. G., Leij, F. J., & Genuchten, M. Th. 1999. Development of pedotransfer functions and related computer programs. U.S. Salinity Laboratory, Riverside, CA, pp 7.

xxxi.             Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book of describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

xxxii.             Seilsepour, M. and Rashidi, M., 2008. Modeling of soil available phosphorus based on soil organic carbon. ARPN Journal of Agricultural Biological Science , 3, pp.1-5.

xxxiii.            Seilsepour, M., Rashidi, M., 2008. Prediction of soil cation exchange capacity based on some soil physical and chemical properties. World Applied Science. Journal 3, 200–205.

xxxiv.            Shelukindo, H.B., Semu, E., Msanya, B.M., Singh, B.R., Munishi, P.K.T., 2014b. Predictor variables for soil organic carbon contents in the Miombo woodlands ecosystem of Kitonga forest reserve, Tanzania. International Journal of Agricultural Science 4 (7), 222–231 (ISSN: 2167-0447).

xxxv.             Sumner, M.E. and Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), pp.1201-1229.

xxxvi.             Szilas, C., Møberg, J.P., Borggaard, O.K. and Semoka J.M. (2005). Mineralogy of characteristic well-drained soils of sub-humid to humid Tanzania. Acta Agriculturae Scandinavica, Section B- Soil and Plant Science 55: 241-251

xxxvii.             Thomas, G.W. 1982.  Exchangeable cations. In: L.A. Page, R.H. Miller, and D.R. Keeney (Eds.) Methods of soil analysis,  Part 2 (2nd Ed.) Agronomy Monograph No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp 595-624

xxxviii.             Tietje, O., and Hennings, V. 1996. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to variability within FAO textural classes. Geoderma, 69, 71-84.

xxxix.            Van den Berg, M., E. Klamt, L. P. Van Reeuwijk, and W. G. Sombroek. 1997. Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma 78:161-180.

xl.            Vareecken, H., Maes, J., Feyen, J., Darius, P., 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science. 148, 389–403.

xli.             Vereecken, H. and Herbst, M., 2004. Statistical regression. Developments in soil science, 30, pp.3-19.

xlii.             Wills, S.A., Burras, C.L. and Sandor, J.A., 2007. Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Science Society of America Journal, 71(2), pp.380-388.

xliii.            Wösten, J.H.M., Pachepsky, Y.A. and Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of hydrology, 251(3-4), pp.123-150.

xliv.            Wösten, J.H.M., van Genuchten, M.T., 1988. Using texture and other soil properties to predict the unsaturated hydraulic conductivity. Soil Science Society of America Journal. 52, 1762–1770.

xlv.             Young, M. D. B., Gowing, J. W., Hatibu, N., Mahoo, H. M. F., & Payton, R. W. 1999. Assessment and development of pedotransfer functions for Semi-Arid Sub-Saharan Africa. Physics and Chemistry of the Earth –European Geophysical Society (B), Elsevier Science Ltd. 24, 845–849.

Cite this Article: