Phenotyping of Salt Stress Hybrid Maize through Hydroponic Culture at Seedling Stage
Author(s)
M. Shalim Udin , Neelima Hossain , Md. Hasanuzzaman , Masum Billah , Shirin Aktar , Shamim Ara Bagum ,
Download Full PDF Pages: 118-131 | Views: 720 | Downloads: 211 | DOI: 10.5281/zenodo.3710800
Abstract
Maize (Zea mays L.) grows in wide range of agro-ecological environment of the world. Production of maize throughout the world is an evocation to meet global food security. For agriculture, salinity is one of the principal challenges in salt affected zones of the world. An efficient study of 45 test-cross hybrids maize was carried out in a hydroponic culture to find out desirable salt tolerant maize hybrids with two levels of salinity (0 dS m-1 and 12 dS m-1 NaCl). Ten days old maize seedlings were transplanted to hydroponic pot, seedlings were evaluated after 18 days exposure of salinity. Significant variations were observed for all parameters except root shoot ratio and root dry weight of the all hybrids. Path analysis indicated that SDW (shoot dry weight) highly reliable component of total dry matter. The first five principal components (PCs) explained about 96.0% of the total variation. Cluster analysis placed the 45 hybrid into 5 main groups; among those clusters, group III showed the highest number of relative mean value of traits. From the genotype × traits bi-plot of eight traits of 45 genotypes, the highest positive relationship found in MSL (maximum shoot length), SDW (shoot dry weight) and SPAD, RDW (root dry weight) traits. Through analysis it was concluded that P-16 x IPB911-16 was most salt tolerant genotypes, followed by P-14 x IPB911-16 and P-19 x IPB911-16 and very susceptible genotypes were CZI-26 x IPB911-16, CZI-08 x IPB911-16, P-62 x IPB911-16 and P-1 x IPB911-16. The selected hybrids will be helpful for future maize breeding to develop salt tolerant hybrid maize.
Keywords
Maize, salinity, hydroponic, stress, tolerant
References
i. Akram, M., M.Y. Ashraf, R. Ahmad, E.A. Waraich, J. Iqbal and M. Mohsan. 2010. Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany 42: 141-154.
ii. Akram, M., M.A. Malik, M.Y. Ashraf, M.F. Saleem and M. Hussain. 2007. Competitive seedling growth and K/Na ratio in different maize (Zea mays L.) hybrids under salinity stresS. Pak. J. Bot 39: 2553-2563.
iii. Ashraf, M.A., M. Ashraf and Q. Ali. 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pakistan Journal of Botany 42: 559-565.
iv. Bilgin, O., I. Baser, K. Korkut, A. Balkan and N. Saglam. 2008. The impacts on seedling root growth of water and salinity stress in maize (Zea mays indentata Sturt.). Bulgarian Journal of Agricultural Sciences 14: 313-320.
v. de Azevedo Neto, A.D., J.T. Prisco, J. Enéas-Filho, C.E.B. de Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56: 87-94.
vi. Grieve, C., L. Francois and J. Poss. 2001. Effect of salt stress during early seedling growth on phenology and yield of spring wheat. Cereal research communications: 167-174.
vii. Hayat, S., S.A. Hasan, M. Yusuf, Q. Hayat and A. Ahmad. 2010. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany 69: 105-112.
viii. Hoque, M.M.I., Z. Jun and W. Guoying. 2015. Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. Journal of BioScience & Biotechnology 4.
ix. Hussain, K., A. Majeed, K. Nawaz and M.F. Nisar. 2010. Changes in morphological attributes of maize (Zea mays L.) under NaCl salinity. American Eurasian Journal of Agricultural Environmental Science 8: 230-232.
x. Hussein, M., L. Balbaa and M. Gaballah. 2007. Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences 3: 321-328.
xi. Igartua, E., M. Gracia and J. Lasa. 1994. Characterization and genetic control of germination-emergence responses of grain sorghum to salinity. Euphytica 76: 185-193.
xii. Izzo, R., F. Navari‐Izzo and M.F. Quartacci. 1991. Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of Plant Nutrition 14: 687-699.
xiii. Kamal, A., M.S. Qureshi, M.Y. Ashraf and M. Hussain. 2003. Salinity induced changes in some growth and physio-chemical aspects of two soybean [Glycine max (l.) Merr.] Genotypes. Pakistan Journal of Botany 35: 93-97.
xiv. Khan, A.A., S.A. Rao and T. McNeilly. 2003. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131: 81-89.
xv. Khodary, S. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agricultural Biology 6: 5-8.
xvi. Koyro, H.-W. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany 56: 136-146.
xvii. Mansour, M., K. Salama, F. Ali and A. Abou Hadid. 2005. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen. Appl. Plant Physiol 31: 29-41.
xviii. Meloni, D.A., M.A. Oliva, H.A. Ruiz and C.A. Martinez. 2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition 24: 599-612.
xix. Mohammad, M., R. Shibli, M. Ajlouni and L. Nimri. 1998. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. Journal of Plant Nutrition 21: 1667-1680.
xx. Paterniani, E. 1990. Maize breeding in the tropics. Critical Reviews in Plant Sciences 9: 125-154.
xxi. Raghuwanshi, K. and S. Duhoon. 2004. Analysis of variance and frequency distribution of different characters in sesame (Sesamum indicum L.). Sesame and Safflower Newsletter.
xxii. Ranum, P., J.P. Peña‐Rosas and M.N. Garcia‐Casal. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences 1312: 105-112.
xxiii. Sarwar, G., M.Y. Ashraf and M. Naeem. 2004. Genetic variability of some primitive bread wheat varieties to salt tolerance. Pakistan Journal of Botany 35: 771-778.
xxiv. Stanger, G. 1985. Coastal salinization: a case history from Oman. Agricultural water management 9: 269-286.
xxv. Willenborg, C.J., J.C. Wildeman, A.K. Miller, B.G. Rossnagel and S.J. Shirtliffe. 2005. Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. Crop Science 45: 2023-2029.
xxvi. Woll, K., L.A. Borsuk, H. Stransky, D. Nettleton, P.S. Schnable and F. Hochholdinger. 2005. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiology 139: 1255-1267.
xxvii. Yan, W. 2013. Biplot analysis of incomplete two-way data. Crop Science 53: 48-57.
xxviii. Yusuf, M., S.A. Hasan, B. Ali, S. Hayat, Q. Fariduddin and A. Ahmad. 2008. Effect of Salicylic Acid on Salinity‐induced Changes in Brassica juncea. Journal of Integrative Plant Biology 50: 1096-1102.
xxix. 2002. Tomato response to salt stress. XXVI International Horticultural Congress: Advances in Vegetable Breeding 637.
xxx. Akram, M., M.Y. Ashraf, R. Ahmad, E.A. Waraich, J. Iqbal and M. Mohsan. 2010. Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany 42: 141-154.
xxxi. Akram, M., M.A. Malik, M.Y. Ashraf, M.F. Saleem and M. Hussain. 2007. Competitive Seedling Growth And K/Na Ratio In Different Maize (Zea Mays L.) Hybrids Under Salinity Stress. Pak. J. Bot 39: 2553-2563.
xxxii. Aktar, S., N. Hossain, M.G. Azam, M. Billah, P.L. Biswas, M.A. Latif, et al. 2018. Phenotyping of Hybrid Maize (Zea mays L.) at Seedling Stage under Drought Condition. American Journal of Plant Sciences 9: 2154.
xxxiii. Ali, Z., A.S. Khan and M.A. Asad. 2002. Salt tolerance in bread wheat: Genetic variation and heritability for growth and ion relation. Asian J. Plant Sci 1: 420-422.
xxxiv. Ashraf, M.A., A. Akbar, A. Parveen, R. Rasheed, I. Hussain and M. Iqbal. 2018. Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol. Biochem. 123: 268-280.
xxxv. Ashraf, M.A., M. Ashraf and Q. Ali. 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot 42: 559-565.
xxxvi. Bagum, S., M. Billah, N. Hossain, S. Aktar and M.S. Uddin. 2017. Detection of salt tolerant hybrid maize as germination indices and seedling growth performance. Bulgarian Journal of Agricultural Science 23: 793-798.
xxxvii. Billah, M., M. Latif, N. Hossain and M. SHALIM UDDIN. 2017. Evaluation and selection of salt tolerant hybrid maize under hydroponics culture. Research on Crops 18.
xxxviii. Crutzen, P.J., A.R. Mosier, K.A. Smith and W. Winiwarter. 2016. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene. Springer. p. 227-238.
xxxix. Grieve, C., L. Francois and J. Poss. 2001. Effect of salt stress during early seedling growth on phenology and yield of spring wheat. Cereal research communications: 167-174.
xl. Hayat, S., S.A. Hasan, M. Yusuf, Q. Hayat and A. Ahmad. 2010. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany 69: 105-112.
xli. Hoque, M.M.I., Z. Jun and W. Guoying. 2015. Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. Journal of BioScience & Biotechnology 4.
xlii. Hu, W., S. Tian, Q. Di, S. Duan and K. Dai. 2018. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica 56: 1204-1211.
xliii. Hussain, K., A. Majeed, K. Nawaz and M.F. Nisar. 2010. Changes in morphological attributes of maize (Zea mays L.) under NaCl salinity. American Eurasian Journal of Agricultural Environmental Science 8: 230-232.
xliv. Hussein, M., L. Balbaa and M. Gaballah. 2007. Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences 3: 321-328.
xlv. Igartua, E., M. Gracia and J. Lasa. 1994. Characterization and genetic control of germination-emergence responses of grain sorghum to salinity. Euphytica 76: 185-193.
xlvi. Izzo, R., F. Navari‐Izzo and M.F. Quartacci. 1991. Growth and mineral absorption in maize seedlings as affected by increasing NaCl concentrations. Journal of plant nutrition 14: 687-699.
xlvii. Kamal, A., M.S. Qureshi, M.Y. Ashraf and M. Hussain. 2003. Salinity induced changes in some growth and physio-chemical aspects of two soybean [Glycine max (l.) Merr.] genotypes. Pak. J. Bot 35: 93-97.
xlviii. Khan, A.A., S.A. Rao and T. McNeilly. 2003. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131: 81-89.
xlix. Khodary, S. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int. J. Agric. Biol 6: 5-8.
l. Koyro, H.-W. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany 56: 136-146.
li. Meloni, D.A., M.A. Oliva, H.A. Ruiz and C.A. Martinez. 2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition 24: 599-612.
lii. Mohammad, M., R. Shibli, M. Ajlouni and L. Nimri. 1998. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. Journal of plant nutrition 21: 1667-1680.
liii. Nandhini, D.U., E. Somasundaram and M.M. Amanullah. 2018. Effect of rhizobial nod factors (lipochitooligosaccharide) on seedling growth of blackgram under salt stress. Legume Research: An International Journal 41.
liv. Niu, G., W. Xu, D. Rodriguez and Y. Sun. 2012. Growth and Physiological Responses of Maize and Sorghum Genotypes to Salt Stress. ISRN Agronomy 2012: 12. doi:10.5402/2012/145072.
lv. Qayyum, A., H.M. Saeed, M. Hanif, E. Noor, W. Malik, S. Liaqat, et al. 2016. Exploitation of variability for salinity tolerance in maize hybrids (Zea mays L.) at early growth stage. African Journal of Agricultural Research 11: 4206-4213.
lvi. Ranum, P., J.P. Peña‐Rosas and M.N. Garcia‐Casal. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences 1312: 105-112.
lvii. Sarwar, G., M.Y. Ashraf and M. Naeem. 2004. Genetic variability of some primitive bread wheat varieties to salt tolerance. Pakistan Journal of Botany 35: 771-778.
lviii. Stanger, G. 1985. Coastal salinization: a case history from Oman. Agricultural water management 9: 269-286.
lix. Sun, Y., C. Mu, H. Zheng, S. Lu, H. Zhang, X. Zhang, et al. 2018. Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Scientific reports 8: 16203.
lx. Tahjib-Ul-Arif, M., M.N. Siddiqui, A.A.M. Sohag, M.A. Sakil, M.M. Rahman, M.A.S. Polash, et al. 2018. Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. Journal of plant growth regulation 37: 1318-1330.
lxi. Wang, M., Y. Wang, Y. Zhang, C. Li, S. Gong, S. Yan, et al. 2019. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes & genomics: 1-21.
lxii. Willenborg, C.J., J.C. Wildeman, A.K. Miller, B.G. Rossnagel and S.J. Shirtliffe. 2005. Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. Crop Science 45: 2023-2029.
lxiii. Woll, K., L.A. Borsuk, H. Stransky, D. Nettleton, P.S. Schnable and F. Hochholdinger. 2005. Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiology 139: 1255-1267.
lxiv. Yusuf, M., S.A. Hasan, B. Ali, S. Hayat, Q. Fariduddin and A. Ahmad. 2008. Effect of Salicylic Acid on Salinity‐induced Changes in Brassica juncea. Journal of integrative plant biology 50: 1096-1102.
lxv. (https://www.sciencebuddies.org/science-fair-projects/references/measuring-plant-growth).
lxvi. (https://study.com/academy/lesson/plant-shoot-system-structure-function-quiz.html)
lxvii. (https://www.studyread.com/importance-of-roots-uses/)
Cite this Article: