The Correlation of Limousin Bulls Fresh Semen Quality and Their Genetic Trait according to Polymorphic Secreted Phosphoprotein 1 (SPP1) and Follicle Stimulating Hormone Receptor (FSH-R) Encoding Gene Restriction Analysis

Author(s)

Yudit Oktanella , Astika D. S. Setiyoningrum , Syafirah Fauziah Rianto , Wawid Purwatiningsih , Andreas Bandang Hardian , Dyah Kinasih Wuragil , Aulanni ,

Download Full PDF Pages: 62-68 | Views: 585 | Downloads: 172 | DOI: 10.5281/zenodo.3991716

Volume 4 - June 2020 (06)

Abstract

This research aimed to elaborate the presence of polymorphisms in Secreted Phosphoprotein 1 (SPP1) and Follicle Stimulating Hormone Receptor (FSH-R) encoding genes using Polymorphism Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) which were then correlated to sperm concentration and motility percentage in bulls. A total of twenty samples of bull whole blood and their fresh semen were collected. The semen samples were evaluated to screen the sperm motility and concentration in standard manners. We performed DNA extractions from the bulls’ whole blood followed by amplification of SPP1 and FSH-R encoding gene and enzymatic digestion using HindIII. The number of bands after enzymatic restriction and the results of semen quality examination were analyzed using the Spearman test (α=0.05). The number of cleaved SPP1 gene fragments and sperm concentration showed a weak positive correlation (r=0.231) in contrary with the correlation to the semen motility percentage which showed a very weak negative value (r=-0.0728). The number of cleaved FSH-R gene fragments towards sperm concentration and motility percentage were correlated which respectively showed a very weak negative (r=-0.0364) and a very weak positive correlation (r=0.0840). Hence, there’s no significant correlation of SPP1 and FSH-R encoding gene polymorphisms towards bull sperm concentration and motility percentage (p>0.05).

Keywords

FSH-R gene, Limousin bull, PCR RFLP, semen quality, SPP1 gene

References

           i.            Arslan, K., B. Akyüz, O. K. Agaoglu. (2015) Investigation of STAT5 FSHR, and LHR Gene Polymorphism in Turkish Indigenous Cattle Breeds (East Anatolian Red, South Anatolian Red, Turkish Grey, Anatolian Black, and Zavot. Russian Journal of Genetics, 51(11): 1088-1095.

         ii.            Carroll and Zamjanis (1983). Bull Guidelines established by Society for theriogenology (SFT) P.O Box 218. Hastings NE. 68902-2118.Fax (402)461-4103

       iii.            Chambaz, A., Scheeder, M. R. L., Kreuzer, M., & Dufey, P. A. (2003). Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat science, 63(4): 491-500.

       iv.            Damayanti, R., A. L. Toleng, M. Yusuf. (2017). Effect of Medium Sexing Egg Albumin on Motility, Life Percentage, and Spermatozoa Abnormalities After Freezing in Bali Cattle. J. Sains            & Teknologi. 17(1): 96-102.

         v.            Erickson, D. W. (2006). [Thesis] Role of Osteopontin In Bovine Sperm Capacitation and Fertilization. Pennsylvania: The Pennsylvania State University.

       vi.            Garbers, D. L., Tubb D. J., Kopf G. S. (1980). Regulation of sea urchin spermcyclic AMP-dependent protein kinases by an egg associatedfactor. Biol Reprod, 22:526-532.

     vii.            Gaviria, S. M., Albeiro L. H., Jose J. E. Z. (2015). Association between FSHR polymorphism with productive and reproductive traits in Antioquia Holstein cattle. Rev.Fac.Nac.Agron. 69(1): 7793-7801.

   viii.            Gomez-Raya, L., Olsen, H. G., Lingaas, F., Klungland, H., Våge, D. I., Olsaker, I., Talle SB, Aasland M, & Lien, S. (2002). The use of genetic markers to measure genomic response to selection in livestock. Genetics, 162(3): 1381-1388.

       ix.            Hernawati, T.  Sri M., Rimayanti., Tri W. S. (2019). Identification on Osteopontin Promoter Gene Polymorphism and Post-thawing Quality in Dairy Bull Peranakan Friesian Holstein. IOP Conf. Series: Materials Science and Engineering 546.

         x.            Kim, S. (2007). Immunohistochemical Study of Osteopontin In Boar Testis. Journal of Veterinary Science, 8(2): 107–110.

       xi.            Monsón, F., Sañudo, C., & Sierra, I. (2004). Influence of cattle breed and ageing time on textural meat quality. Meat Science, 68(4): 595-602.

     xii.            Moura, A. A. (2005). Seminal plasma proteins and fertility indexes in the bull: The case for osteopontin. Anim. Reprod., 2(1)

   xiii.            Moura, A. A., E. Memili. (2016). Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim. Reprod., 13(3): 191-199.

    xiv.            Murphy, E. M., Kelly, A. K., O’Meara, C., Eivers, B., Lonergan, P., & Fair, S. (2018). Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. Journal of animal science, 96(6): 2408-2418.

      xv.            Nasution, R. B. (2013). Identification of Follicle Stimulating Hormone Receptor (FSHR | Alu-1) Gene Diversity in Indonesian Local Cows With PCR-RFLP Technique. [Skripsi]. Bogor: IPB.

    xvi.            Nikiforova, M. N., & Nikiforov, Y. E. (2011). Molecular Anatomic Pathology in Diagnostic Immunohistochemistry, David J Dabbs (Eds), 42–57. doi:10.1016/b978-1-4160-5766-6.00006-6

  xvii.            Oktanella Y., Samik, A., Tatik H., Ngakan M. R. W., Intan P. D. (2014). Osteopontin Addition in Holstein Friesian Dairy Frozen Cement Diluents Increase B-Cell Cll / Lymphoma-2 Spermatozoa Postthawing Expression. Jurnal Veteriner, 15(4): 461-466.

xviii.            Paramitasari, K. A. (2013). [Skripsi] Monomorphic Allele Osteopontin Gene (SPP1 | BsrI) in Bali Cattle By PCR-RFLP Method. Bogor: Institut Pertanian Bogor.

    xix.            Pogorzelska, J., Miciński, J., Ostoja, H., Kowalski, I. M., Szarek, J., & Strzyżewska, E. (2013). Quality traits of meat from young Limousin, Charolais and Hereford bulls. Pak Vet J, 33(1): 65-68.

      xx.            Pollak, E. J. (2005). Application and impact of new genetic technologies on beef cattle breeding: a ‘real world’perspective. Australian Journal of Experimental Agriculture, 45(8): 739-748.

    xxi.            R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  xxii.            Sang, L., Q. Du, W. Yang, K. Tang, J. Yu, G. Hua, X. Zhang, L. Yang. (2011). Polymorphisms in follicle stimulation hormone receptor, inhibin alpha, inhibin bata A, and prolactin genes, and their association with sperm quality in Chinese Holstein bulls. Animal Reproduction Science, 126: 151-156.

xxiii.            Sharifiyazdi, H., Mirzaei, A., & Ghanaatian, Z. 2018. Characterization of polymorphism in the FSH receptor gene and its impact on some reproductive indices in dairy cows. Animal reproduction science, 188: 45-50.

xxiv.            Tash, J. S, Means A. R. 1983. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. BiolReprod, 28:75-104.8.

  xxv.            Varasofiari, L. N. (2013). Evaluation of the Quality of Fresh Cement of Brebes Java Cattle Based on Storage Time. Animal Agriculture Journal, 2(1)

Cite this Article: