Effect of Drought Stress by Polyethylene Glycol 6000 on Six Wheat (Triticum aestivum L.) Varieties at Germination and Seedling Stages

Author(s)

Abdalla Mohammed A. Mansour , Abdul Halim Rajab Indoush ,

Download Full PDF Pages: 01-12 | Views: 659 | Downloads: 271 | DOI: 10.5281/zenodo.4040889

Volume 4 - August 2020 (08)

Abstract

Six varieties of wheat (Triticum aestivum L.) Al-Mokhtar, Margawi, ACSAD901, Casy, Karim, and Salampoo were evaluated under 5 drought levels 0, 60, 120, 180 and 240 g/L (0.00 (control), -0.066, -0.201, -0.407, -0.682 MPa). To make drought stress conditions we used polyethylene glycol (PEG6000). Germinated seeds were counted daily for up to 14 days under laboratory conditions. Germination percentage and mean germination time, coefficients of germination, mean germination rate, and germination index as germination parameters. Seedling, shoot and root length; fresh, dry weight of shoot and root, seedling vigor index, and reduction percentage as seedling growth parameters were studied. Germination and growth of wheat seedling were affected significantly by changes in water stress levels between -4 and -8 MPa. Margawi variety had the highest germination percentage (78%) among the six varieties, followed by Karim. The two varieties of Salampoo and Casy showed the longest mean germination time. We also noticed that Margawi variety was the fastest at the average germination rate, followed by Al-Mukhtar, Karim, and ACSAD 901. The studied varieties showed a clear decrease in all the germination criteria studied at the high drought rates (-0.407 and -0.682 MPa). By studying growth parameters, the variety al-Mokhtar followed by ACSAD 901 and Margawi higher in shoot length; ACSAD 901, Margawi, and Al-Mokhtar sequentially in plant length.

Keywords

drought stress, water stress, germination, wheat, PEG 6000, osmotic stress

References

                   i.            Abro, A. A., Memon, S., Abro, S. A., Sam, E. K., He, R., Rind, M. H., Memon, S., Solangi, Z., T.Muhammad, Ali, B., Ahmed, W., Dev, W., Abro, M. A., Rajput, N., Nizamani, S., Nargis, M., & Kumbhar, R. A. (2020). Evaluation of drought tolerance in wheat (Triticum aestivum l.) cultivars at early seedling stage using polyethylene glycol induced osmotic stress. The Journal of Animal & Plant Sciences, 30(4), 950–957.

      ii.            Ahmad, M., Shabbir, G., Nasir, M. M., & Shah, M. K. N. (2013). Identification of drought tolerant wheat genotypes based on seedling traits. Sarhad J. Agric., 29(1), 21–27.

    iii.            Ahmad, N. S., Kareem, S. H. S., Mustafa, K. M., & Ahmad, D. A. (2017). Early screening of some Kurdistan wheat (Triticum aestivum L.) cultivars under drought stress. Journal of Agricultural Science, 9(2), 88–103. https://doi.org/10.5539/jas.v9n2p88

     iv.            Ahmed, R. B., Aboelkassem, A. A., Ali, S. M., Ismail, E., El-Sherbeny, G. A. R., & Elsayed, H. M. A. (2019). Screening the responsible impact of fourteen bread wheat (Triticum aestivum L.) genotypes against osmatic water stress mediated through PEG6000 in terms of seed germination and early seedling growth stage in search of promising drought tolerant genotypes. Asian Journal of Empirical Research, 1(2), 78–97.

       v.            Almaghrabi, O. A. (2012). Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Science Journal, 9(1), 590–598.

     vi.            Ashraf, M., & Mahmood, S. (1990). Response of four Brassica species to drought stress. Environ Exp Bot, 30, 93–100.

   vii.            Baque, M. d. A., Faijunnahar, M., Habib, M. d. A., & Motmainna, M. (2018). PEG induced germination, seedling growth and water relation behavior of wheat genotypes under salt stress condition. Universal Journal of Plant Science, 6(3), 21–31. https://doi.org/10.13189/ujps.2018.060301

 viii.            Chachar, M. H., Chachar, N. A., Chachar, S. D., Chachar, Q. I., Mujtaba, S. M., & Yousafzai, A. (2014). In-vitro screening technique for drought tolerance of wheat (Triticum aestivium L.) genotypes at early seedling stage. Journal of Agricultural Technology, 10(6), 1439–1450.

     ix.            Chachar, Z., Chachar, N. A., Chachar, Q. I., Mujtaba, S. M., Chachar, G. A., & Chachar, S. (2016). Identification of drought tolerant wheat genotypes under water deficit conditions. International Journal of Research – Granthaalayah, 4(2), 206–214.

       x.            Chaniago, I., Syarif, A., & Riviona, P. (2017). Sorghum seedling drought response: In search of tolerant genotypes. International Journal on Advanced Science, Engineering and Information Technology, 7(3), 892–897. https://doi.org/10.18517/ijaseit.7.3.1303

     xi.            Demir, I., & Mavi, K. (2008). Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Braz. Arch. Biol. Technol. v.51 N, 51(5), 897–902. http://www.scielo.br/pdf/babt/v51n5/a04v51n5.pdf

   xii.            Dezfuli, P. M., Sharif-zadeh, F., & Janmohammadi, M. (2008). Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). Journal of Agricultural and Biological Science, 3(3), 22–25.

 xiii.            Dodd, G. L., & Donovan, L. A. (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany, 86(8), 1146–1153. https://doi.org/10.2307/2656978

 xiv.            Emmerich, W. E., & Hardegree, S. P. (1991). Seed germination in polyethylene glycol solution: Effects of filter paper exclusion and water vapor loss. In Crop Science (Vol. 31, Issue 2, pp. 454–458). https://doi.org/10.2135/cropsci1991.0011183X003100020046x

      xv.            Farshadfar, E., Elyasi, P., & Dabiri, S. (2012). Association between in vitro and in vivo predictors of drought tolerance in the landraces of bread wheat (Triticum aestivum L.). European Journal of Experimental Biology, 2(4), 984–994.

    xvi.            Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1–6. https://doi.org/10.3126/ijls.v10i1.14509

  xvii.            Gholamin, R., Khayatnezhad, M., Somarin, S. jamaati-e-, & Zabihi-e-Mahmoodabad, R. (2010). Effects of polyethylene glycol and NaCl stress on two cultivars of wheat (Triticum durum) at germination and early seedling stages. American-Eurasian J. Agric. & Environ. Sci., 9 (1): 86-90, 2010, 9(1), 86–90.

xviii.            Harb, A. M. (2013). Reserve mobilization, total sugars and proteins in germinating seeds of durum wheat (Triticum Durum Desf.) under water deficit after short period of imbibition. Jordan Journal of Biological Sciences, 6(1), 67–72. https://doi.org/10.12816/0000261

    xix.            Hellal, F. A., El-Shabrawi, H. M., Abd El-Hady, M., Khatab, I. A., El-Sayed, S. A. A., & Abdelly, C. (2018). Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. Journal of Genetic Engineering and Biotechnology, 16(1), 203–212. https://doi.org/10.1016/j.jgeb.2017.10.009

      xx.            Kacem, N. S., Delporte, F., Muhovski, Y., Djekoun, A., & Watillon, B. (2017). In vitro screening of durum wheat against water- stress mediated through polyethylene glycol. Journal of Genetic Engineering and Biotechnology, 15(1), 239–247. https://doi.org/10.1016/j.jgeb.2017.04.004

    xxi.            Kamran, M., Shahbaz, M., Ashraf, M., & Nudrat, A. A. (2009). Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pakistan Journal of Botany, 41(2), 621–632.

  xxii.            Kaufmann, M. R., & Eckard, A. N. (1971). Evaluation of water stress control with polyethylene glycols by analysis of guttation. Plant Physiology, 47(4), 453–456. https://doi.org/10.1104/pp.47.4.453

xxiii.            Khakwani, A., Dennett, M. D., & Munir, M. (2011). Early growth response of six wheat varieties under artificial osmotic stress condition. Pak. J. Agri. Sci., 48(2), 119–123.

xxiv.            Khan, M. I., Shabbir, G., Akram, Z., Shah, M. K. N., Ansar, M., Cheema, N. M., & Iqbal, M. S. (2013). Character association studies of seedling traits in different wheat genotypes under moisture stress conditions. Sabrao Journal of Breeding and Genetics, 45(3), 458–467.

  xxv.            Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiol. (1973), 51, 914–916.

xxvi.            Mohammadi, N., & Mojaddam, M. (2014). The effect of water deficit stress on germination components of grain sorghum cultivars. Indian Journal of Fundamental and Applied Life Sciences, 4(4), 284–291.

xxvii.            Partheeban, C., Chandrasekhar, C. N., Jeyakumar, P., Ravikesavan, R., & Gnanam, R. (2017). Effect of PEG induced drought stress on seed germination and seedling characters of maize (Zea mays L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 6(5), 1095–1104. https://doi.org/10.20546/ijcmas.2017.605.119

xxviii.            Qadir, S. A. (2019). Wheat grains germination and seedling growth performance under drought conditions. Basrah Journal of Agricultural Sciences, 31(2), 44–52. https://doi.org/10.21276/basjas

xxix.            Rana, M., Hasan, M., Bahadur, M., & Islam, M. (2017). Effect of polyethylene glycol induced water stress on germination and seedling growth of wheat (Triticum aestivum). The Agriculturists, 15(1), 81–91. https://doi.org/10.3329/agric.v15i1.33431

  xxx.            Ranal, M. A., & De-santana, D. G. (2006). How and why to measure the germination process ? Revista Brasil. Bot., 29(1), 1–11.

xxxi.            Ranal, M. A., De-santana, D. G., Ferreira, W. R., & Mendes-Rodrigues, C. (2009). Calculating germination measurements and organizing spreadsheets. Revista Brasil. Bot., 32(4), 849–855. https://doi.org/10.1590/S0100-84042009000400022

xxxii.            Rasaei, B., Ghobadi, M., & Khas-amiri, M. (2013). Effect of osmotic potential on germination and seedling characteristics of soybean seeds. Intl J Agri Crop Sci., 11(5), 1265–1268.

xxxiii.            Razmjoo, M., Mohammadi, R., & Shooshtari, L. (2015). In vitro evaluation of durum wheat genotypes for drought tolerance. Journal on New Biological Reports, 4(1), 33–40.

 xxxiv.            Shaban, M. (2013). Effect of water and temperature on seed germination and emergence as a seed hydrothermal time model. International Journal of Advanced Biological and Biomedical Research, 1(12), 1686–1691. http://www.ijabbr.com

   xxxv.            Španić, V., Ižaković, M., & Marček, T. (2017). Wheat germination and seedlings under PEG-induced condition. Agronomski Glasnik, 3, 99–110.

 xxxvi.            Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedure of statistics. A Biometrical Approach. (2nd Inter.). McGraw-Hill.

xxxvii.            Surbhaiyya, S. D., Gahukar, S. J., Jadhav, P. V, Bhagat, S. Y., Moharil, M. P., Potdukhe, N. R., & Singh, P. K. (2018). In-vitro based screening of promising wheat (Triticum aestivum L.) genotypes for osmotic stress imposed at seedling stage. Int.J.Curr.Microbiol.App.Sci, 6, 2500–2508.

xxxviii.            Xiaoyu, L., Chunsheng, M., & Jixiang, L. (2014). The germination and seedlings growth response of wheat and corn to drought and low temperature in spring of Northeast China. Journal of Animal &Plant Sciences, 21(1), 3212–3222.

Cite this Article: