Status of the fall armyworm [Spodoptera frugiperda (J.E. Smith)] infestation on maize one year after detection in eastern Uganda

Author(s)

Frank Kagoda , Paul Mufumbiro , Joel Amunaun , Emmanuel Basena , Stella Kabiri ,

Download Full PDF Pages: 54-64 | Views: 422 | Downloads: 115 | DOI: 10.5281/zenodo.4040950

Volume 4 - August 2020 (08)

Abstract

The fall armyworm (Spodoptera frugiperda), first observed in Uganda in mid 2016, has the potential to cause maize yield losses of 15 – 75%. The study was aimed at determining the fall armyworm (FAW) status on maize in eastern Uganda one year after detection. We interviewed 270 farmers from nine districts of eastern Uganda for this study. Key elements during interviews were: the maize varieties grown, maize grain yields, FAW awareness, symptoms and mitigation measures. Results showed that 41.5% of the farmers were still not aware of the FAW outbreak. The most common FAW symptom reported was the formation of holes on leaves. Majority (60.7%) of farmers were using pesticides, especially rocket 44EC, to control the FAW, whereas 11.9% relied on cultural methods and 26.7% did not apply any control measures. Under pesticide use, grain yields were much higher in the highlands especially Bukwo (5.1 – 7.5 t ha-1) as reported by 80% of respondents, and lowest (< 1.25 t ha-1) in the lowlands of Luuka, Pallisa and Butaleja as reported by 53.3-66.7% of the respondents.  Varieties Longe 10H, Longe 5, Longe 7H and the landraces, registered the lowest grain yields (< 1.25 t ha-1) under no pesticide use. Therefore, the FAW is more aggressive in the lowland than in the highland districts of Uganda. The poor agronomic practices in the lowland districts exacerbated the effect of the FAW.  

Keywords

Awareness, districts, control, fall armyworm, landraces, rocket

References

                    i.            Adamczyk, J.J. & Sumerford, D.V. 2000. Increased tolerance of fall armyworms (Lepidoptera: Noctuidae) to Cry1Ac d-endotoxin when fed transgenic Bacillus thuringiensis cotton: Impact on the development of subsequent generations. Florida Entomologist, 84:1–6.

      ii.            Agrihome. 2018. Fall Armyworm: Recommended Pesticides and Controls.   http://agrihomegh.com /control-fall-armyworm. 2008 - 2018 Agrihome Epressions.

    iii.            Al-Sarar, A., Hall, F.R. & Downer, R.A. 2006. Impact of spray application methodology on the development of resistance to cypermethrin and spinosad by fall armyworm Spodoptera frugiperda (J.E. Smith). Pest Management Science 62:1023–1031.

     iv.            Bernal, J.S., Melancon, J.E. & Zhu‐Salzman, K. 2015. Clear advantages for fall armyworm larvae from feeding on maize relative to its ancestor Balsas teosinte may not be reflected in their mother's host choice. Entomologia Experimentalis et Applicata. 155(3):206-217.

       v.            Bessin, R. 2003. Fall armyworm in corn. ENTFACT-110. University of Kentucky. https://entomology.ca.uky.edu/ef110. [Accessed Aug. 20, 2018].

     vi.            Bohnenblust, E. 2012. Fall Armyworm as a Pest of Field Corn.  Insect Advice from Extension. Fact Sheets. Penn State College of Agricultural Sciences. http://ento.psu.edu/extension/factsheets/fall-armyworm. [Accessed Aug. 20, 2018].

   vii.            CIMMYT 2017. Scientists tackle deadly fall armyworm infestation devastating maize in southern Africa. By Brenda Wawa.  https://www.cimmyt.org. [Accessed Aug. 20, 2018].

 viii.            Dal Pogetto, M.H.F.A.,  Prado, E.P., Gimenes, M.J.,  Christovam, R.S.,  Rezende, D.T.,  Aguiar-Junior, H.O., Costa, S.I.A. & Raetano, C.G. 2012. Corn Yield with Reduction of Insecticidal Sprayings Against Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Agronomy, 11 (1):17-21.

     ix.            Goergen, G., Kumar, P.L., Sankung, S.B., Togola, A. & Tamò, M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE, DOI: 10.137/journal.pone.0165632.

       x.            Kinyua, Z. M. 2017.  Interim Recommendations for Management of Fall Armyworm in Kenya. Compiled by Z.M. Kinyua. Head of Crop Health Sub-Unit KALRO Headquarters. 10. 04. 2017.

     xi.            Luginbill, P. 1928. The fall armyworm. United States Department of Agriculture Washington, D. C. Technical bulletin no. 34.

   xii.            MAAIF 2017. Media Brief on Control of Fall Armyworm in Uganda. April 10, 2017.  Hon. Ssempijja B. Vincent, Ministry of Agriculture, Animal Industry and Fisheries. http://gcic.gou.go.ug/press-release-army-worm. [Accessed Aug. 16, 2018].

 xiii.            .Plantwise 2017. Fall armyworm on maize. Pest Management Decision Guide: Green And Yellow List. Patrick Beseh (Author). www.plantwise.org.

 xiv.            Prasanna, B. M., Huesing, J.E., Eddy, R. & Peschke, V.M. 2018. Fall Armyworm in Africa: A Guide for Integrated Pest Management, First Edition. Mexico, CDMX: CIMMYT.

   xv.            Souza, J.R., Carvalho, G.A., Moura, A.P., Couto, M.H.G. & Maia, J.B.  2013. Impact of insecticides used to control Spodoptera frugiperda (J.E. Smith) in corn on survival, sex ratio, and reproduction of Trichogramma pretiosum Riley offspring. Chilean Journal of Agricultural Research, 73(2).

 xvi.            SPSS  2011. Version 20. IBM SPSS Statistics. Copyright IBM Corporation and its licensors 1989, 2011. https://www.ibm.com/analytics/spss-statistics-software.

xvii.            Sullivan, M. J., Turnipseed, S.G. & Robinson, D.  1999. Insecticidal effi-cacy against a complex of fall and beet armyworms and soybean looper in South Carolina cotton, pp. 1034–1036. In Proceedings, 1999 Beltwide Cotton Conferences, 3–7 January 1999, Orlando, FL. National Cotton Council, Memphis, TN.

xviii.            Swayamjit, R., Gaffor, I., Acevedo, F.E., Helms, A., Chuang, W.P., Tooker, J., Felton, G.W. & Luthe, D.S. 2015. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. Journal of Chemical Ecology, 41(9):781–792.

 xix.            Togola A., Meseka, S., Menkir, A., Badu-Apraku, B., Boukar, O., Tamò, M. & Djouaka, R.  2018. Measurement of Pesticide Residues from Chemical Control of the Invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a Maize Experimental Field in Mokwa, Nigeria. International Journal of Environmental Research and Public Health 15, 849: doi:10.3390/ijerph15050849.

   xx.            UBOS 2010. Uganda Census of Agriculture 2008/2009. Uganda Bureau of Statistics, Volume iii Agricultural Household and Holding Characteristics Report.

 xxi.            Whalon, M. E., Mota-Sanchez, D., Hollingworth, R. M. & Duynslager, L. 2008. Arthropod pesticide resistance database. www.pesticideresistance.org/search/12/0/200/0/. [Accessed Aug. 20, 2018].

xxii.            Widstrom, N.W., Bondari, K. & Mcmillian, W.W. 1993. Heterosis among insect resistance maize populations. Crop Science, 3:989–994.

xxiii.            Widstrom, N.W., Williams, W.P., Wiseman, B.R. & Davis, F.M. 1992. Recurrent selection for resistance to leaf feeding by fall armyworm on maize. Crop Science, 32:1171-1174.

xxiv.            Wilkinson K., & Elevitch, C.  1998. The Overstory #15 - Cultivating Connections With Other Farmers. Agroforestry Net, Inc. All Rights Reserved. https://www.agroforestry.org/the-overstory. [Accessed Aug. 28, 2018].

xxv.            Williams, W.P., Buckley, P.M. & Davis, F.M. 1989. Combining ability for resistance in corn to fall army-warm and southwestern corn borer. Crop Science 29:913-915.

xxvi.            Williams, W.P., Buckley, P.M. & Davis, F.M. 1995.  Combining ability in maize for fall armyworm and southwestern corn borer resistance based on a laboratory bioassay for larval growth. Theoretical and Applied Genetics, 90:275-278.

xxvii.            Wood, K. A., Wilson, B. H. & Graves, J. B.  1981. Influence of host plant on the susceptibility of the fall armyworm to insecticides. Journal of Economic Entomology, 74:96–98.

xxviii.            Yu, S. J. 1992. Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 85:675–682.

Cite this Article: