Analyzing Potential of Wheat (Triticum aestivum L.) Strains Under Drought Milieue For Seedlings Traits


Mujahid Alam , Muhammad Kashif , Rizwana Maqbool , Nisar Ahmed ,

Download Full PDF Pages: 47-53 | Views: 480 | Downloads: 140 | DOI: 10.5281/zenodo.4040938

Volume 4 - August 2020 (08)


Wheat is globally known king among small grain cereals due to its high consumption and demand. Wheat has higher nutritive value for daily diet. The demand of this ancient cereal is rising with day to date increase in population. Wheat crop is facing yield constraints that limit production due to climatic change. The climate change involved in fluctuations linked with availability of water supply. This climate challenge tends to increase the drought stress for crop production. The current research was planned to screen the stock of wheat accessions under drought milieu to cope against the climate peril to wheat production. Hundred and two genotypes were evaluated on seedling traits e.g. RL (root length), SL (shoot length), FW (fresh shoot weight), DW (dry shoot weight), R/S % (root to shoot ratio) and RWC (relative water content). The accessions were evaluated under control and drought. The findings showed significant result of accessions performance for seedling traits under drought stress. Under drought stress root length varied from (5.03 cm to 17.50 cm), shoot length varied from (11.20 cm to 25 cm), fresh shoot weight varied from (0.28 g to 0.86 g) , dry shoot weight varied from (0.10 g to 0.30 g), root to shoot % varied from (0.27 % to 0.91 %) and relative water contents varied from (53.66 % to 73 %). Direct selection can be recommended on the base of seedling traits for drought tolerance to figure out valued strains of wheat


Clime change, drought stress, wheat accessions, valued strains


                   i.            Abd-El-Haleem S.H.M., M.A. Reham and S.M.S. Mohamed. 2009. Genetic analysis and RAPD polymorphism in some durum wheat genotypes. Gl. J. Biotech. Biochem. 4(1): 01-09.

      ii.            Ahmad, M., G. Shabbir, N.M. Minhas and M.K.N. Shah. 2013. Identification of drought tolerant wheat genotypes based on seedling traits. Sarhad J. Agric. 29:21-27.

    iii.            Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. Osorio, I. Carvalho, T. Faria and C. Pinheiro. 2009. How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89:907-916.

     iv.            Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trds. Plant Sci. 5:187-188.

       v.            Farooq, M., Hussain, M. and Siddique, K.H., 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), pp.331-349.

     vi.            Gahlaut, V., Jaiswal, V., Tyagi, B.S., Singh, G., Sareen, S., Balyan, H.S. and Gupta, P.K., 2017. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PloS one, 12(8), p.e0182857.

   vii.            Hussain, M., Farooq, M., Sattar, A., Ijaz, M., Sher, A. and Ul-Allah, S., 2018. Mitigating the adverse effects of drought stress through seed priming and seed quality on wheat (Triticum aestivum L.) productivity. Pakistan Journal of Agricultural Sciences, 55(2).

 viii.            Khakwani, A.A., M.D. Dennet and M. Munir. 2011. Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin J. Sci. Technol. 33:135-142.

     ix.            Lonbani, M. and A. Arzani. 2011. Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agron. Res. 9:315-329.

       x.            Mahpara, S. 2008. Biometrical analysis of important plant attributes in spring wheat, Ph. D. thesis, Dept. PBG. Univ. Agric. Faisalabad, Pakistan.

     xi.            Maier, M., Mueller, M. and Yan, X., 2017. Introducing a localised spatio-temporal LCI method with wheat production as exploratory case study. Journal of Cleaner Production, 140, pp.492-501.

   xii.            Mujtaba, S.M., S. Faisal, M.A. Khan, S. Mumtaz and B. Khanzada. 2016. Physiological studies on six wheat (Triticum Aestivum L.) genotypes for drought stress tolerance at seedling stage. Agric. Res. Technol. 1:1-6.

 xiii.            Nafees, M., M.J. Jaskani, S. Ahmed and F.S. Awan. 2015. Morpho-molecular characterization and phylogenetic relationship in pomegranate germplasm of Pakistan. Pak. J. Agri. Sci. 52:97-106.

 xiv.            Nezhadahmadi, A., Z.H. Prodhan and G. Faruq. 2013. Drought tolerance in wheat. Sci. W. J. 610-721.

   xv.            Rauf, S., M. Munir, M. U. Hassan, M. Ahmad and M. Afzal. 2006. Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afr. J. Biotechnol. 13:971-975.

 xvi.            Schonfeld, M.A., R.C. Johnson, B.F. Carver and D.W. Mornhigweg, 1988. Water relations in winter wheat as drought resistance indicators. Crop Sci. 28:526-531.

xvii.            Sharafi, S., G.K. Ghassemi, S. Mohammadi, S. Lak and B. Sorkhy. 2011. Evaluation of drought tolerance and yield potential in winter barley (Hordeum vulgare) varieties. JFAE. 9: 419-422.

xviii.            Sharif, N., M.J. Jaskani, S.A. Naqvi and F.S. Awan. 2019. Exploitation of diversity in domesticated and wild ber (Ziziphus mauritiana Lam.) germplasm for conservation and breeding in Pakistan. Sci. Hortic. 249:228–239.

 xix.            Siddig, M.A., S. Baenziger, I. Daweikat and A.A. El-Hussein. 2013. Preliminary screening for water stress tolerance and genetic diversity in wheat (Triticum aestivum L.) cultivars from Sudan. J. Genet. Eng. Biotechnol. 11:87-94.

   xx.            Steel, R.G.D., J.H. Torrie and DA. Dickey. 1997. Principals and procedures of statistics: A biometrical approach. McGraw Hill Book Co., New York.

 xxi.            Taiz, L. and E. Zeiger. 2014. Plant physiology, 6th Ed. Sinauer Associated, Inc. USA; pp.672-702.

xxii.            Wahid, A., S. Gelani, M. Ashraf and M.R. Foolad. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-223.

xxiii.            Zaharieva, M., E. Gaulin, M. Havaux, E. Acevedo and P. Monnevaux. 2001. Drought and heat responses in the wild wheat relative Aegilops Geniculata Roth. Crop Sci. 41: 1321-1329.

xxiv.            Zampieri, M., Ceglar, A., Dentener, F. and Toreti, A., 2017. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12(6), p.064008

Cite this Article: