Grain Yield, Grain Weight and Protein, Fe, Zn, Se and Phytic Acid Concentrations of Lentil under Dryland Conditions
Author(s)
Abdulkadir Aydogan , Duygu Ates , Vural Karagul , Alaatin Keceli , Turgay Sanal , Asuman Kaplan Evlice , Nurettin Cinkaya , Metehan Yuce ,
Download Full PDF Pages: 08-25 | Views: 716 | Downloads: 230 | DOI: 10.5281/zenodo.4625375
Abstract
Lentil seed is rich in protein, essential amino acids, micronutrients and vitamins for human consumption and in developing countries, protein and micronutrient grain legumes, including lentils seeds, generally meet requirements. In the current study, five experimental plots were established at the three different dryland locations in Central Anatolian Plateau of Turkey with a typical continental climate in 2008 and 2009 experimental years. According to the data obtained, it was determined that the measurements showed interaction according to these years and locations. Promising lentil lines, that are evaluated in present study and have high grain yield, thousand grain weight (TGW), protein and micronutrient content, and also have low level of phytic acid (PA) could be used as parents to develop new lentil varieties in future breeding programs.
Keywords
grain yield, lentil, micronutrients, phytic acid, protein, thousand-grain weight
References
i. AACCI. (2000). American association of cereal chemists, approved methods of the AACC international, 10th ed. The Association, (St. Paul, MN., USA). Method No, 46-30.
ii. Aldemir, S., Ates, D., Yilmaz Temel, H., Yagmur, B., Alsaleh, A., Kahriman, A., Ozkan, H., Vandenberg, A., and Tanyolac, M.B. (2017). QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turkish Journal of Agriculture and Forestry, 41, 243-255.
iii. Ates, D., Aldemir, S., Alsaleh, A., Erdogmus, S., Nemli, S., Kahriman, A., Ozkan, H., Vandenberg, A., and Tanyolac, B. (2018a). A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS ONE, 13(1), e0191375.
iv. Ates, D., Aldemir S., Yagmur, B., Kahraman, A., Ozkan, H., Vandenberg, A., and Tanyolac, M.B. (2018b). QTL mapping of genome regions controlling manganese uptake in lentil seed. G3: Genes, Genomes, Genetics, 8(5), 1409-1416.
v. Ates, D., Sever, T., Aldemir, S., Yagmur, B., Yilmaz Temel, H., Kaya, H.B., Alsaleh, A., Kahraman, A., Ozkan, H., Vandenberg, A., and Tanyolac, B. (2016). Identification QTLs controlling genes for Se uptake in lentil seeds. PLoSONE, 11(3), e0149210.
vi. Aydogan, A. (2011). Winter lentil for cold highland areas. Grain Legumes. The magazine of the European Association for Grain Legume Research (Paris, France), 57, 32-34.
vii. Black, R. E., Victora, C.G., Walker, S.P., Bhutta, Z.A., Christian, P., de Onis, M., Ezzati, M., Grantham-McGregor, S., Katz, J., Martorell, R., Uauy R., and Maternal and Child Nutrition Study Group. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet, 382, 427-451.
viii. Chimienti, F., Favier, A., and Seve, M. (2005). ZnT-8, a pancreatic beta-cell-specific zinc transporter. Springer BioMetals, 18, 313-317.
ix. Ekanayake, L.J., Thavarajah, D., Vial, E., Schatz, B., Mcgee, R., and Thavarajah, P. (2015). Selenium fertilization on lentil. Lens culinaris Medikus grain yield, seed selenium concentration, and antioxidant activity. Field Crops Research, 177, 9-14.
x. Erskine, W. (1984). Evaluation and utilization of lentil germplasm in an international breeding program. In: J. R: Witcombe and W. Erskine (Eds.) Genetic resources and their exploitation - Chickpeas, fababeans and lentils. Martinus Nijhoff Publ, 225-237.
xi. Erskine, W., Williams, P.C., and Nakkoul, H. (1985). Genetic and environmental variation in the seed size, protein, yield and cooking quality of lentils. Field Crops Research, 12, 153-161.
xii. Fischer Walker, C.L., Ezzati, M., and Black, R.E. (2009). Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition, 63, 591-597.
xiii. Frossard, E., Bucher, M., Machler, F., Mozafar, A., and Hurrel, R. (2000). Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric, 80, 861-879.
xiv. Gupta, U.C. (1998). Hand book of Reference Methods for Plant Analysis. Editor: Kalra YP (Boca Raton), CRC Press, 171-182.
xv. Hamdi, A., Erskine, W., and Gates, P. (1991). Relationship among economic characters in lentil. Eupytica, 57, 109-116.
xvi. Haug, W., and Lantzsch, H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34, 423-1426.
xvii. Kacar, B. (1972). The Chemical Analyses of Plant and Soil: II. Plant Analyses. (Ankara, Turkey), Ankara University Press.
xviii. Kacar, B., and Inal, A. (2008). Plant Analyses. (Ankara, Turkey), Ankara University Press.
xix. Karakoy, T., Erdem, H., Baloch, F.S., Toklu, F., Eker, S., Kilian, B., and Ozkan, H. (2012). Diversity of macro- and micronutrients in the seeds of lentil landraces. The Scientific World Journal, 1-9.
xx. Khazaei, H., Subedi, M., Nickerson, M., Martínez-Villaluenga, C., Frias, J., and Vandenberg, A. (2019). Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods, 8, 391.
xxi. Klein, M.A., and Grusak, M.A. (2009). Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome, 52, 677-691.
xxii. Kumar, H., Dikshit, H.K., Singh, A., Jain, N., Kumari, J., Singh, A.M., Singh, D., Sarker, A., Prabhu, K.V. (2014). Characterization of grain iron and zinc in lentil (Lens culinaris Medikus culinaris) and analysis of their genetic diversity using SSR markers. AJCS, 8(7), 1005-1012.
xxiii. Kumar, J., Gupta, D.S., Kumar, S., Gupta, S., Singh, N.P. (2016). Current knowledge on genetic biofortification in lentil. Agric. Food Chem, 64,6 383-6396.
xxiv. MacDonald, R.S. (2000). The role of zinc in growth and cell proliferation, The American Society for Nutritional Sciences. The Journal of Nutrition, 130(5), 1500-1508.
xxv. Maqsood, M., Schoenau, J.J., and Vandenberg, A. (2016). Zinc fertilization of lentil for grain yield and grain zinc concentration in ten Saskatchewan soils. Journal of Plant Nutrition, 39, 866-874.
xxvi. Mehra, R., Sarker, A., Khandia, R., Munjal, A. (2018). Genetic variability for quantitative traits in lentil (Lens culinaris Medicus culinaris). International Journal of Advances in Science Engineering and Technology, 6(2), 11-19.
xxvii. Mekonnen, F., Mekbib, F., Kumar, S., Ahmed, S., and Sharma, T.R. (2014). Agromorphological traits variability of the Ethiopian lentil and exotic genotypes. Advances in Agriculture, https://doi.org/10.1155/2014/870864.
xxviii. Molkentin, J.D. (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. The Journal of Biological Chemistry, 275(50), 38949-38952.
xxix. Morris, E.R., and Hill, A.D. (1996). Inositol phosphate content of selected dry beans, peas, and lentils, raw and cooked. Journal of Food Composition and Analysis, 9(1), 2-12.
xxx. Muehlbauer, F.J., and Mcphee, K. (2007). Registration of ‘Morton’ winter-hardy lentil. Crop Science, 47, 438-439.
xxxi. Oliveira, K.J.F., Donangelo, C.M., Oliveira, A.V., Silveira, C.L.P., and Koury, J.C. (2009). Effect of zinc supplementation on the antioxidant, copper, and iron status of physically active adolescents. Cell Biochemistry and Function, 27, 162-166.
xxxii. Rasheed, N., Maqsood, M.A., Aziz, T., and Jabbar, A. (2020). Characterizing lentil germplasm for zinc biofortification and high grain output. J Soil Sci Plant Nutr, https://doi.org/10.1007/s42729-020-00216-y.
xxxiii. Rahman, W.M.M., Zaman, E.M.S., Thavarajah, P., Thavarajah, D., and Siddique, K.H.M. (2013). Selenium biofortification in lentil (Lens culinaris Medikus sub sp. culinaris): Farmers' field survey and genotype×environment effect. Food Res Int, 54, 1596-1604.
xxxiv. Sakar, D., Durutan, N., and Meyveci, K. (1988). Factors which limits the productivity of cool season food legume in Turkey. pp 137-146 in world Crops: Cool Season Food Legume (ed. RJ. Summerfield). Kluwer Acedemic Publisher, (the Netherlands).
xxxv. Salgueiro, M.J., Zubillaga, M., Lysionek, A., Sarabia, M.I., Caro, R., De Paoli, T., Hager, A., Eng, R.W., and Bioch, J.B. (2000). Zinc as an essential micronutrient: A review. Nutrition Research, 20(5), 737-755.
xxxvi. Sarker, A., Erskine, W., and Saxena, M.C. (2004). Global perspective on lentil improvement. In. Masood, A., Singh, B., Kumar, S., Dhar, V. eds. Pulses in new perspective. Indian Institute of Pulses Research (Kanpur, India), 543-550.
xxxvii. Sarker, A., Rizvi, A.H., Singh, M. (2017). Genetic variability for nutritional quality in lentil (Lens culinaris Medikus Subsp. culinaris). Legume Research, doi:10.18805/LR-372.
xxxviii. Sarwar, G., Abbas, G., and Asghar, M.J. (2010). Genetic study for quantitative traits in F5 generation of lentil (Lens culinaris Medik). Journal of Agricultural Research, 48(3), 279-288.
xxxix. Sharma, V., Paswan, S.K., Sıngh, V.K., and Khandagale, S. (2014). Correlation and path coefficient analysis of economically important traits in lentil (Lens culinaris Medik) germplasm. The Bioscan, 9(2), 819-822.
xl. Shrestha, R., Siddique, K.H.M., Turner, N.C., Turner, D.W., and Berger, J. (2005). Growth and seed yield of lentil (Lens culinaris Medikus) genotypes of West Asian and South Asian origin and crossbreds between the two under rainfed conditions in Nepal. Australian Journal of Agricultural Research, 56, 971-981.
xli. Silim, N.S., Saxena, M.C., and Erksine, W. (1991). Effect of sowing date on the growth and yield of lentil in rainfed Mediterranean environment. Explanation Agriculture, 27, 145-154.
xlii. Solanki, I.S., Kapoor, A.C., and Singh, U. (1999). Nutritional parameters and yield evaluation of newly developed genotypes of lentil (Lens culinaris Medik). Plant Foods for Human Nutrition, 54, 79-87.
xliii. Solh, M., and Erskine, W. (1984). Genetic resources of lentils. In. Witcombe J. R., Erskine, W. eds. Genetic resources and their exploitation - Chickpeas, fababeans and lentils. Martinus Nijhoff Publ, 205-224.
xliv. Sozen, O., and Karadavut, U. (2017). Determination of the relationship between yield and yield components of winter red lentil genotypes under the conditions of Amik Plain. Turkish Journal of Agricultural and Natural Sciences, 4(4), 468-476.
xlv. Thavarajah, D., Thavarajah, P., Sarker, A., and Vandenberg, A. (2009). Lentils Lens culinaris Medikus subsp. culinaris. A whole food for increased iron and zinc intake. Journal of Agricurral Food Chemistry, 57, 5413-5419.
xlvi. Thavarajah, D., Thavarajah, P., Sarker, A., Materne, M., Vandemark, G., Shrestha, R., Idrissi, O., Hacikamiloglu, O., Bucak, B., and Vandenberg, A. (2011a.) A global survey of effects of genotype and environment on selenium concentration in lentils Lens culinaris L. implications for nutritional fortification strategies. Food Chemistry, 125, 72-76.
xlvii. Thavarajah, D., Thavarajah, P., See, C.T., and Vandenberg, A. (2010). Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chemistry, 122, 254-259.
xlviii. Thavarajah, D., Thavarajah, P., Wejesuriya, A., Rutzke, M., Glahn, R.P., Combs, G.F., and Vandenberg, A. (2011b). The potential of lentil Lens culinaris L. as a whole food for increased selenium, iron, and zinc intake. preliminary results from a 3 years’ study. Euphytica, 180, 123-128.
xlix. Toklu, F., Ozkan, H., Karakoy, T., and Coyne, J.C. (2017). Evaluation of advanced lentil lines for diversity in seed mineral concentration, grain yield and yield components. Journal of Agricultural Sciences, 23, 213-222.
l. Tyagi, S.D., and Khan, M.H. (2011). Correlation, path-coefficient and genetic diversity in lentil (Lens culinaris Medik) under rainfed conditions. International Research Journal of Plant Science, 2(7), 191-200.
li. Vanda, M., Khodambashi, M., Houshmand, S., Shiran, B., and Amiri-Fahlian, R. (2013). Determination of gene action and heritability for some biometrical traits in lentil (Lens culinaris Medik) using F2:3 families. International Journal of Agriculture and Crop Sciences, 5(13), 1427-1431.
lii. Welch, R.M., and Graham, R.D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55, 353-64.
liii. Wessells, K.R., and Brown, K.H. (2012). Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE, 7, e5056.
liv. White P.J., and Broadley, M.R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10, 586-593.
lv. Yamaguchi, S., Miura, C., Kikuchi, K., Celino, F.T., Agusa, T., Tanabe, S., Miura, T. (2009). Zinc is an essential trace element for spermatogenesis. PNAS, 106(26), 10859-10864.
Cite this Article: