Quality Asset Ability of Rhizobium Spciese from Organic Base Bio Fertilizer Production Using Multiple Organic Waste as Carrier Base Inreadeness for Commercialization

Author(s)

Silas David Emmanuel , Barminas Jeffrey Tsware , I.M. Bugaje , R, A .Damau ,

Download Full PDF Pages: 10-29 | Views: 417 | Downloads: 141 | DOI: 10.5281/zenodo.4625343

Volume 5 - February 2021 (02)

Abstract

Microorganisms work incognito to maintain the ecological balance by active participation in carbon, nitrogen, sulphur and phosphorous cycles in nature. Soil samples were collected from 12 sites, four from each of the study areas viz; NARICT  farm   land, Yankusa Land fill,   and Sakadadi agricultural farm land  . The total chromium content was analyzed using atomic absorption spectrophotometry (AAS). Physiochemical analysis of the contaminated and control land fill were also determined. The parameters determined were colour, odour, pH, temperature, Nitrogen, % potassium and % phosphorus etc. All parameters were found to be higher than the WHO limit except % Nitrogen, % Potassium and % Phosphorus that falls beyond.  Further investigations were carried  out    to checkmate  the proximate  analysis   of some   nutritional values of  Chemical fertilizer  A and B as control   while C for biofertilzer ( treated)  Most of the results  computed  shows there  were significantly higher values in both  macronutrient  and micronutrient  in Biofertilizer(C)  production than those of the Chemical fertilizer (A and B).   In view of the current   investigation,   bacteria isolates   like those  of  (Rhizobium sp ) namely; Rhizobium  Japonicum, Rhizobium   lupine etc  were isolated  as  nitrogen fixing bacteria from root nodules of soya bean. Thus   identification, and characterization rhyzobial sp for the production of biofertilizer  In selective modified (MYEMA)  through which propagation  of bacteria    mass cells were  accentuated  insitu. To this effect,  the propagated  mass cells  of    the bacteria  were therefore meticulously  and circumspectively  mixed   with  multiple carrier base  materials; for further utilization in the soils to increase its nutrient quality naturally after combining it with the soil.  For nitrogen is one of the important component which acts as a building blocks of most biomolecules, but this inert nitrogen cannot be utilized by plants so the Rhizobium bacteria helps to fix the atmospheric nitrogen to ammonia which can be utilized by plants.  In view of this study   the production of biofertilizer from   nitrogen fixing bacterial strains as well as utilizing them in the organic farming

Keywords

Rhozobium, Biofertilzer production, Multiple carrier organic base waste, Macro element/ microelement

References

                  i.            Abdul Halim NB (2009). Effects of using enhanced bio-fertilizer containing N-fixer bacteria on patchouli growth. Thesis faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, pp. 145

      ii.            Abiodum AO, Adeoeju A.B. (2011). Effect of processing on the chemical, pasting and composition of Banbara Nut (Vigna subterranea L. verdc) flours. Adv. J. Food Sci. 3:224-227.

    iii.            Adawiah B. I. (2008). Isolation, Characterization and Identification of Microorganisms from Soil Contaminated with Pesticide. A thesis submitted to Faculty of Chemical & Natural Resources Engineering University Malaysia Pahang. Pp 18—19

     iv.            Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science 26(1): 1-20.

       v.            Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In Potassium solubilizing microorganisms for sustainable agriculture pp. 293-313.

     vi.            Aneja K.R.(2007). Experiements in Microbiology plant pathology and Biotechnology. 4 th edition, New Age international publishers New Delhi, india.

   vii.            AOAC (1984): Standard Official Method of Analysis of the Association of official Analysis SW (Bd) Washington DC

 viii.            Balasubramaian A, Kumar K (1987) Performance of Azospirillum biofertilizer in irrigated and rainfed upland rice. International Rice Research Newsletter, Philippines.

     ix.            Bannats MI, Nigan P, Singh D(2008). Microbial Decolorizationof Tannery effluent a review Bioresource Technology.; 58:217-277.

       x.            Barak, (1999). Essential elements for plants growth, published by  Nature publishere, 1-5

     xi.            Boboye, B.E., Ogundeji, B.A. and Evbohoin, H. 2011. Mutational search for high temperature (60°C) tolerant variant of Rhizobium species CWP G34A. Adv Biosci Biotechnol.2, 255-62.

   xii.            Boonkerd N, Singleton P (2002) Production of rhizobium biofertilizer. Biotechnology of Biofertilizers, Narosa Publishing House, New Delhi, India, pp. 122-128.

 xiii.            Brown S. 2012. Apple, pp. 329-367. In: Badenes M.L. and D.H. Byrne (eds). Fruit breeding. Springer Science Business Media, Philadelphia, USA.

 xiv.            Chang C.H,  and  Yang S.S. (2009). Thermotolerant phosphate solubilizingmicrobes for multifunctional bio-fertilizer preparation. BioresearchTechnology, 100: 1648–1658

   xv.            Collee, J.G. and Miles, R.S.(1989). Mackie and McCartney Pratical Medical Microbiology> Churchchill livingstone, Edinburgh, 13 th edn, :141-160.

 xvi.            Datta, A., Singh, R.K. and Kumar, S.( 2015). Isolation, characterization and growth  of Rhizobium strains under optimum conditions for effective biofertilizer production. Int. J. Pharm. Sci. Rev. Res. 32(1), 199-208

xvii.            Deora, G.S. and Singal, K.(2010). Isolation, biochemical chacterization and  preparation of biofertilizers using Rhizobium strain for commercial use.

xviii.            Dhungana TP, Yadav PN,(2009). Determination of chromium inTannery Effluent and Study of Adsorption of Cr (VI) onSawdust and Charcoal from Sugacane Bagasses. J. Nepal Chem. Soc. 23:93-101.

 xix.            Fawole,M.O & Oso, B. A(2004).Laboratory manual of miCrobiology  spectrum  book  Ltd ring road Ibadan Pp 45-4

   xx.            Gauri., Singh, A.K. and Bamania, M. (2012). Characterization of Mesorhizobium sp. isolated from root nodules of Cicer arietinum. Int J Agri Sci Res.2, 142-154.

 xxi.            Gomare, K.S., Mese, M., Shetkar Y. 2013. Isolation ofAzotobacter and cost effectivproduction of biofertilizer.Indian J. Appl. Res., 3(5): 54- 56.

xxii.            Gupta A.K. 2004. The complete technology book onbiofertilizers and organic farming. National Institute of Industrial Research Press. India.

xxiii.            Hari M, Perumal K (2010). Booklet on Bio-fertilizer (phosphabacteria).Shri Annm Murugapa Chettiar Research Centre Taramani Chennai, pp.1–6.

xxiv.            Jyothana DV, Narasimha B(2007).. Influence of diary waste water on soil physiochemical biological and enzymaticproperties pollution research.; 26:711-714.

xxv.            Kannaiyan S (1981) Azolla biofertilizer for rice. In INSFFER Training Seminar. Int. Rice Res Inst Manila, Philippines p

xxvi.            Kaushik BD (2014) Developments in cyanobacterial biofertilizer. In Proc Indian Nat Sci Acad 80(2): pp. 379-388.

xxvii.            Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agronomy for sustainable development 27(1): 29-43.

xxviii.            Khan, A. G. (2006).Relationship between Cr biomagnifications ratio, accumulation factor and mycorrhizae in plants growing on Tannery effluent-polluted soil. Environment  International 26:417-423.

xxix.            Khosro M, Yousef S (2012). Bacterial bio-fertilizers for sustainable cropproduction: A review APRN Journal of Agricultural and BiologicalScience, 7 (5): 237 – 308.

xxx.            Kumar K, Balasubramanian A (1989) Evaluation of two methods of Azospirillum biofertilizer application in rice. Mysore Journal of Agricultural Sciences 23: 1-5.

xxxi.            Kumar K, Balasubramanian B (1986). Field response of rice to Azospirillum biofertilizer. Current Research 15(7): 4-7.

xxxii.            Kumar, V., A. Chandra and G. Singh, (2010). Efficacy of fly-ash based bio-fertilizers vs perfected chemical fertilizers in wheat (Triticum aestivum). Int. J. Sci. Technol., 2: 31-35

xxxiii.            Maatallah, J. Berraaho, E.B. Munoz, S. Sanjuan, J. and  LIuch, C. (2002). Phenotypic and Molecular characterization of Chickpea Rhizobia isolated from different areas of Morocco. J. Appl Microbiol.93:531-40.

xxxiv.            Malusa, E. Sas-Paszt, L. Ciesielska, J.(2012). Technologies for  beneficial microorganisms inocula used as  biofertilizers. The scientific world Journal, 491206.

xxxv.            Martin S, Grisworld W. ( 2009 ). Human Health effluent of heavymetals center for hazardous substance research, Kansas State University, 15. Http www.enqq.ksu.edu/CHS4 assessed 2009. 23:12

xxxvi.            Matiru V.N. Dakora F.D. (2004). Potential use of rhizobial bacteriaas promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol.  3(1):1-7.

xxxvii.            Mifilinge A, Mtei K, Ndakidemi, P(2014) effect of rhizobium inoculation and supplementation with Phosphorus and potassium  on growth, leaf Chlorophll content and nitrogen fixation  of bush bean varieties. American Journal of communication 2(10): 49-57

xxxviii.            Mishra D.J., Singh Rajvir, Mishra U.K., Shahi Sudhir Kumar.2012. Role of Bio-Fertilizer in Organic Agriculture: A Review.J.Recent Sciencies.(2):39-41.

xxxix.            Mittal R, Nagi H, Sharma P, Sharma S (2012). Effect of processing on chemical composition and anti-nutritional factors in chickpea flour. J. Sci. 2:180-186.

     xl.            Mosse B (1973) Plant growth responses to vesicular‐arbuscular mycorrhiza. New Phytologist 72(1): 127-136.

   xli.            Nag A. (2007). Analytical Techniques in Agriculture, Biotechnology and Environmental Engineering. Prentice-Hall of India, New Delhi, pp 84—102.

 xlii.            Nandakumar. Tannery and Chromate industries effluent on soil animal and plant in soil polluted organisms (ed: PC Mishra). Asish Publishing House, New Delhi, 2008, 81-105.

xliii.            Narasimba GA, Sridevi A, Venkata SR, Rajasekhar B. Effects of cotton gaining mill. Effluenht on soil enzymaticactivities and nitrogen mineralization in soil J, Chem.Pharm. Res. 2011; 3:126-137

xliv.            Niste, M., Vidican, R., Pop, R. and Rotar, I. ( 2013). Stress factors affecting symbiosis  activity and nitrogen fixation by  Rhizobium cultured in vitro. Pro  Environ.6, 42-45.

 xlv.            Onyeike E. N. and Osuji, J. O. (2003): Research Techniques In Biological and Chemical Science. Springfield Publishers Ltd Owerri.

xlvi.            Pandey A, Kumar S (1989) potential of azotobacters and azospirilla as biofertilizers for upland agriculture-a review. Journal of scientific & industrial research 48(3): 134-144.

xlvii.            Pervin S., Kivanc, M. and Kinaci, E(2017). Characterization of Rhizobium sp. Isolated from bean. Turkey Journal of Biology, 30:127-137.

xlviii.            Rai, R., Dash, P.K., Gaikwad, K. and Jain, P.K. (2013). Phenotypic and molecular profiling of indigenous chickpea rhizobia in India. CIBTech J Microbiol.2, 33-38

xlix.            Rani Faryal (2003). Role of microorganisms in bioremediation of heavy metal ions and organic pollutants present in textile industry. Unpublished Ph.D thesis submitted to the Department of Biological Sciences, Quaid-l-Azam University, Islamabad Pakistan.

        l.            Ritika B, Uptal D (2014). Bio-fertilizer a way towards organic agriculture:A Review Academic Journals, 8 (24): 2332–2342.

      li.            Roychowdhury, D., Paul, M. and Banerjee, S.K. (2015). Isolation identification and characterization of bacteria (Rhizobium) from chick pea (Cicer arietinum) and production of biofertilizer. Eur J Biotech Biosci.3(12), 26-29.

    lii.            Saxena AK, Tilak KVBR (1999) Potentials and prospects of Rhizobium biofertilizer. Agromicrobes. Jha, MN, Sriram, S., Venkataraman, GS and Sharma SG (eds.). Todays and Tomorrow’s Printers and Publishers, New

  liii.            Somasegaran P, Springer H (1994). Carrier materials used in biofertilizermaking. Nature publisher’s. pp. 2 – 6

   liv.            Sule P.A, Ingle .J.R (1996). effluent discharge anal Chim Acta,; 326:85

     lv.            Tilak K.V.  Jauhri K.S. Saxena A.K. (1992) Rhizobium biofertilizer technology for legumes. IARI, New. Delhi, India, p. 32.

   lvi.            Totey NG, Khatri PK, Shadangi DK, Bagde M, Pathak HD (1997) Effect of (Rhizobium) Biofertilizer on the growth of seedlings and germination of seed of D. sissoo. Indian journal of forestry 20(1): 54-56.

 lvii.            Ugoji E.O, Abaoba O .O. Biological treatments of textile industrial effluents in Lagos metropolis, Nig. J. ofEnviron. Biol. 2004; 25(4):497-02.

lviii.            Van Loon L.C (2007) Plant responses to plant growth-promoting rhizobacteria. In New Perspectives and Approaches in Plant Growth- Promoting Rhizobacteria Research pp. 243-

   lix.            Wagner G.M. (1997) Azolla: a review of its biology and utilization. The Botanical Review 63(1): 1-26.

     lx.            WHO (World Health Organization) WHONET 5.4 update notes Geneva, 1985.

   lxi.            Wood A, Kellong S.T.(2007). Biomass cellulose andhemicelluloses methods enzymes.; 160:632-634.

 lxii.            Yadav, J. Verma, J.P. and Twari, N.K.( 2010).  Effect of plant growth promoting  Rhizobacteria on seed germination and  plant growth chickpea (Cicer arietnum  L.) under in vitro conditions. Biol  Furum Inter J.2, 15-18.

lxiii.            Zafar, S. Aquil, F. and Amad, I.(2007). Metel  tolerance and biosorption potential of filamentous fungi isolate from metal contaminated Agriculture soil. Bioresourc Technol. 992557-2561.

lxiv.            Zahrul Islam, M.D.  Sattar M.A, Ashrafuzaman M, HalimiMohd Saud, Uddin M.K.(2012). Improvement of yield potential of rice through combined application of biofertilizer and chemical nitrogen. Afr J Microbiology. 2012; 6(4):745- 750.

 lxv.            Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta microbiologica et immunologica Hungarica 56(3): 263-284.

Cite this Article: