Improvement of DNA Barcode Amplification Using Gradient PCR

Author(s)

Do Tan Khang , Tran Thanh Men , Tran Gia Huy ,

Download Full PDF Pages: 14-19 | Views: 555 | Downloads: 111 | DOI: 10.5281/zenodo.5141557

Volume 5 - April 2021 (04)

Abstract

DNA barcoding employs sequence variation in short, standardized gene regions as a tool to discriminate species and has many applications in plant authentication. Success amplification through PCR plays a vital role in DNA barcode library construction and sequencing. This study aims to improve determine the optimal annealing temperature for DNA barcode amplification. In this study, eight DNA barcode regions including ITS, matK, rbcL, rpoC1, ycf1b, trnH-psbA, atpF-atpH and psbK-psbI were amplified by gradient PCR to assess and determine the proper annealing temperature. Our results indicated that the PCR yield and specificity for ITS, matK, rbcL, rpoC1 and ycf1b were optimized using gradient PCR. 58°C was required for optimal primer binding temperature in ITS regions while the other regions involved lower annealing temperature, ranging from 49.1°C to 54.2°C. These findings illustrated that an appropriate annealing temperature contributed significantly for PCR success, which is a key step for sequencing quality.

Keywords

Amplification efficiency, annealing temperature, DNA barcodes, gradient PCR, plant authentication

References

                  i.            Cha, R.S., and Thilly W.G., 1993. Specificity, efficiency, and fidelity of PCR. PCR Methods and Applications. 3(3):18-29.

      ii.            CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America. 106(31):12794-12797. 

    iii.            Dong, W., Liu, J., Yu, J., Wang, L., and Zhou, S., 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PloS one. 7(4):1-9.

     iv.            Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., Cheng, T., Guo, J. and Zhou, S., 2015. ycf1, the most promising plastid DNA barcode of land plants. Scientific Report. 5: 8348: 1-5.

       v.            Fazekas, A.J., Kuzmina, M.L., Newmaster, S.G., and Hollingsworth P.M., 2012. DNA barcoding methods for land plants. In: Kress, W.J and Erickson, D.L. eds. DNA barcodes, methods and protocols. Humana Press, New York, USA. pp. 223-252.

     vi.            Hebert, P.D., Cywinska, A., Ball, S.L., and Dewaard, J.R., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences. 270(1512): 313-321.

   vii.            Hollingsworth, P.M., Graham, S.W., and Little, D.P., 2011. Choosing and using a plant DNA barcode. PloS one. 6(5): 1-13.

 viii.            Kress, W.J., 2017. Plant DNA barcodes: Applications today and in the future. Journal of systematics and evolution. 55(4): 291-307.

     ix.            Li, Y., Zhou, S., Tong, X., Wang, L., and Xiang, T., 2019. Analysis of the Origin of Citrus changshan-huyou by DNA Barcode. International Journal of Agriculture and Biology. 22(5): 973-978.

       x.            Rogers, S.O., and Bendich, A.J., 1988. Extraction of DNA from plant tissues. In: Gelvin, S.B., Schilperoort, R.A., and Verma, D.P.S. Eds. Plant molecular biology manual. Springer, Dordrecht. pp: 73-83.

     xi.            Rychlik, W.J.S.W., Spencer, W.J., and Rhoads, R.E., 1990. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic acids research. 18(21): 6409-6412.

   xii.            Siew, G.Y., Ng, W.L., Salleh, M.F., Tan, S.W., Ky, H., Mohammed, A., Noorjahan, B., Tan, S., and Yeap, S. K., 2018. Assessment of the Genetic Variation of Malaysian Durian Varieties using Inter-Simple Sequence Repeat Markers and Chloroplast DNA Sequences. Pertanika Journal of Tropical Agricultural Science. 41(1):321-332.

Cite this Article: