On the Efficiency Performance of Bitter Leaf Farming by Cooperative Members in Anambra State, Nigeria

Author(s)

Obianefo A. Chukwujekwu , Onyekineso J. Chimezie , Okafor P. Ifeoma , Okoroji O. Nma ,

Download Full PDF Pages: 27-40 | Views: 311 | Downloads: 88 | DOI: 10.5281/zenodo.5145973

Volume 5 - June 2021 (06)

Abstract

The study on the efficiency performance of bitter leaf farming by cooperative members in Anambra State, Nigeria used a restrictive Cobb Douglas stochastic frontier approach; production and cost function after testing the null hypothesis for model appropriateness to analyze the data and later predict the technical and economic efficiencies. Data were collected from a cross-section of 205 randomly selected bitter leaf farmers who are members of agricultural cooperatives. The study revealed that fertilizer and labour are the important inputs for bitter leaf production in the area. The study witnessed under-utilization of fertilizer inputs, we, therefore, advised that farm managers should reduce the volume of fertilizer given to the farmers by 54.95% or that policymakers should increase the price of fertilizer available to the farmers by 54.95%. The technical efficiency was found as 77.0% implying that farmers are operating 23.0% below their optimum. For bitter leaf farmers to attain cost-efficiency, they would have to save costs by 3.72%, while cost-inefficient farmer would save 19.35% cost. But, in the short run, the farmers still reserve the chance to increase cost (economic) efficiency by 4.2% through adopting improve agricultural technology. Years of formal education and household size improve the technical efficiency of farmers, while only household size improves economic efficiency. This study is crucial at this time the world needs to grow crops that have so much medicinal value to tackle the menace of the Covid-19 pandemic.

Keywords

productivity, under-utilization, likelihood ratio, stochastic frontier, bitter leaf

References

          i            Nwogwugwu CP, Nwakpu EP, Oyeagu CE & Obi CL (2015). Effect of Vernonia amygdalina (bitter leaf) extract on growth performance, carcass quality and economics of production of broiler chickens. International Journal of Agriculture and Earth Science, 1(5): 1-13.

        ii            Yeap SW, Ho WY, Beh BK, Liang WS, Ky H, Noaman Yousr AH & Alitheen NH (2010). Vernonia amygdalina, an ethnoveterinary and ethnomedical used green vegetable with multiple bioactivities. Journal of Medicinal Plants Research, 4(25): 2787-2812.

      iii            Ekpo A, Eseyin OA, Ikpeme AO & Edoho EJ (2007). Studies on Some Biochemical Effects of Vernonia Amygdalina in Rats. Asia Journal of Biochemistry; 2(3): 193-197.

       iv            Owen OJ, Amakiri AO & Ezeano CI (2010). The cost benefit analysis of incorporating bitter leaf (Vernonia amygdalina) meal in broiler finishers’ diet. Journal of Environmental Issues and Agriculture in Developing Countries, 2(1): 131-141.

         v            Ukegbu FO & Ogbuehi KJ (2004). Effect of the aqueous extract (crude) of leaves of Vernonia amygdalina on blood glucose, serum cholesterol and serum albumin levels in alloxan induced diabetic albino rats. Global Journal Pure Applied Science, 10: 189 - 194.

       vi            Nwajo HU (2005). Efficacy of aqueous leaf extract of Vernonia amygdalina on plasma lipoproteins and oxidative status in diabetic rat model. Nigerian Journal Physiological Science, 20: 39 - 42.

     vii            Nursuhaili AB, Nur Afiqah Syahirah P, Martini MY, Azizah M & Mahmud TMM (2019). A review: medicinal values, agronomic practices and postharvest handlings of Vernonia amygdalina. Food Research pp-pp: 1-13.

   viii            Maduabuchi IA, Bede IE, Okpoko VO, Ugokwe CU & Okereke HN (2019). Effects of three leafy vegetables on the growth performance of Giant African Snail Achatina (Lissachatina) fulica. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 120 (1): 15–20.

       ix            Masaba SC (2000). The antimalarial activity of some traditional medicinal plants. Ethiopian Journal Health Development, 13: 211-216.

         x            Akinpelu DA. (1999). Antimicrobial activity of Vernonia amygdalina leaves. Fitoterapia Journal Study Medicinal Plants, 70: 432 - 435.

       xi            Usunobun, U. & Ngozi, O. (2016). Phytochemical analysis and proximate composition of Vernonia amygdalina. International Journal of Scientific World, 4(1), 11. https://doi.org/10.14419/ijsw.v4i1.5845

     xii            Adanna KK, Oberafo AA & Dika SI (2011). Bitter leaf as a local substitute for hops in the Nigerian brewing industry. Archive of Applied Science Research, 3(4): 388-397.

   xiii            Adenuga AH, Muhammad-Lawal A & Rotimi OA (2013). Economics and technical efficiency of dry season tomato production in selected areas in Kwara state, Nigeria. Agris On-line Papers in Economics and Informatics, 5(1):11-19.

   xiv            Raychelle M (2016). A wealth of opportunities in a world of limits: free enterprise. Economics of Cooperation, Federal Reserve Bank of Dallas; www.dallasfed.org

     xv            Sule A & Yusuf A (2019). External financing and agricultural productivity in Nigeria. Journal of Economics and Finance, 3(1), 307-320.

   xvi            Obianefo CA, Osuafor OO, Ezeano CI & Anumudu OO (2020). Mediation effect of adopting good agronomic practices on rice productivity in Anambra State, Nigeria. Intl Journal of Agric. and Rural Dev., 23(1): 4913-4926.

 xvii            Lissitia A & Odening G (2005). Efficiency and Total Factor Productivity in Ukrainian Agriculture in Transition. Agricultural Economics 32: 311-328.

xviii            Aliyu A & Shelleng AB (2019). Analysis of Technical, Allocative and Economic Efficiencies of Yam Producers in Ganye Local Government Area of Adamawa State, Nigeria.” International Journal of Engineering Technologies and Management Research, 6(7): 129-143.

   xix            Ajibefun IA, Battese GE & Daramola AG (2002). Determinants of Technical Efficiency in Small Holder Crops Farming: Application of Stochastic Frontier Production Function. Quarterly Journal of International Agriculture, 41(3): 225 -240.

     xx            Obianefo CA, Nwigwe CA, Meludu TN & Anyasie IC (2020). Technical efficiency of rice farmers in Anambra State value chain development programme. Journal of Development and Agricultural Economics, 12(2): 67-74.

   xxi            Ajayi OO, Amos TT & Aminu TJ (2018). Analysis of the technical efficiency of Tomato production in Oyo State, Nigeria. Second International Conference on Food Security and Hidden Hunger (8th –10th October 2018), Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria, pp. 13-16.

 xxii            Ohajianya DO, Onu PN, Ugwu JN, Osuji MN, Nwaiwu IU, Orebiyi JS, Godson-Ibeji CC & Enyia CO (2013). Technical efficiency of table egg producers in Imo State, Nigeria. Asian Journal of Agricultural Extension, Economics and Sociology, 2(2): 118-127.

xxiii            Najjuma E, Kavoi MM, Mbeche R (2016). Assessment of technical efficiency of open field tomato production In Kiambu County, Kenya (stochastic frontier approach). Jomo Kenyatta of Agriculture and Technology Journals. 17 (2): 21-39.

xxiv            Amos TT (2018). Agricultural production and productivity: the game changing food security paradigm in Nigeria. Inaugural Lecture Series 95, Federal University of Technology. Akure, Ondo State.

  xxv            Adeoye IB (2020). Factors Affecting Efficiency of Vegetable Production in Nigeria: A Review. Agricultural Economics. DOI: 10.5772/intechopen.92702.

xxvi            Farrell PV (1975). Purchase and material management. Journal of Supply Chain Management, 11(1): 4-4.

xxvii            Biam CK, Okorie A & Nwibo SU (2016). Economic efficiency of small scale soyabean farmers in Central Agricultural Zone, Nigeria: A Cobb-Douglas stochastic frontier cost function approach. Journal of Development and Agricultural Economics, 8(3): 52-58.

xxviii            Mahesh S & Mahima B (2018). Resource use efficiency analysis for potato production in Nepal. Journal of Nepal Agricultural Research Council, 4: 54-59. DOI: http://dx.doi.org/10.3126/jnarc.v4i1.19690

xxix            Coelli TJ, Prasada RDS & Battese GE (1998). An Introduction to Efficiency and Productivity Analysis. Boston: Kluwer Academic Publishers.

  xxx            Charnes A, Cooper W & Rhodes E (1978). Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2:429-444.

xxxi            Aigner DJ & Chu SF (1968). Estimating the Industry Production Function. Am. Econ. Rev. 58:826-839.

xxxii            Ali M & Chaudhry MA (1990). International farm efficiency in Pakistan Punjab: a frontier production function study. J. Agric. Econ. 41(3):42-74.

xxxiii            Fasasi A. R. (2006). Resource use efficiency in yam production in Ondo State, Nigeria. Agric. J., 1 (2), 36-40.

xxxiv            Fleming P, Fleming E, Griffith G & Johnston D (2004). Animal Efficiency in an Intensive Beef Production Genetic Breeding Unit, Armidale: University of New England, NSW, Australia.

xxxv            Aigner DJ, Lovell CAK & Schmidt P (1977). Formulation and estimation of stochastic frontier production model. J. Econ. 6:22-37.

xxxvi            Kirkley JE, Squires D & Strand IE (1995). Assessing technical efficiency in commercial fisheries: the Mid-Atlantic Sea Scallop fishery. Am. J. Agric. Econ. 20:31-34.

xxxvii            Tabe-Ojong MP, Molua EL (2007). Technical efficiency of smallholder tomato production in semi-urban farms in Cameroon: A stochastic frontier production approach. Journal of Management and Sustainability, 7(4):27-35.

xxxviii            Rolf F & Knox LCA (1978). Measuring the technical efficiency of production. Journal of Economic Theory, 19: 150-162.

xxxix            Malinga N, Masuku M & Raufu M (2015). Comparative analysis of technical efficiencies of smallholder vegetable farmers with and without credit access in Swazil and the case of the Hhohho Region.

       xl            Nnamdi E, Stephen O, Glory BC, Ubon E, Emeka Osuji & Melissa Okwara (2016). Farming techniques, environmental challenges, and technical efficiency of Sweet Potato production in Abia State, Nigeria. International Journal of Agricultural Management and Development, 409-420.

     xli            Osawe OW, Adeqeye-Bolarin AJ & Omonona-Bolarin O. (2018). Technical efficiency of small scale farmers: An application of the stochastic frontier production function on fish farmers in Ibadan Metropolis. Electronic Journal, 1-41. DOI: 10.2139/ssrn.1819042.

   xlii            Ogunniyi LT & Oladejo JA (2011). Technical Efficiency of tomato production in Oyo State Nigeria. Agricultural Science Research Journal, 1(4): 84 – 91.

 xliii            Martin M, Taylor TG. 2003. A comparison of the efficiency of producers under collective and    individual    modes    of    organization.    Colombian Economic Journal. 1(1):246-266.

 xliv            Jorgenson DW & Lau LJ (1973). The duality of technology and economic behavior. Discussion paper number 252 (Cambridge: Harvard Institute of Economic research.

   xlv            Bravo-Ureta, B.E. & Evenson, R.E. 1993. Efficiency Analysis of Developing Country Agriculture: A Review of the Frontier Function Literature. Agricultural and Resource Economic Review, 22: 88-101.

 xlvi            Obianefo CA, Nwike CM, Anumudu OO & Onyekineso CJ (2020). Analysis of the Resource Management Ability by Catfish Farmers in Nigeria: A Case of Ogbaru Local Government Area, Anambra State. International Journal of Agricultural Economics, 5(5): 156-164.

xlvii            Awunyo-Victor D, Abawiera CW & Aidoo R (2016). Resource use efficiency among maize farmers in Ghana. Agric. & Food Security, 5 (28): 1-10.

xlviii            Fasasi AR (2006). Resource use efficiency in yam production in Ondo State, Nigeria. Agric. J., 1 (2), 36-40.

 xlix            Mijindadi N. B. (1980). Production efficiency on farms in Northern Nigeria. An unpublished Ph.D Thesis, Cornell University, U.S.A.

          l            Ochi JE, Sani RM & Idefoh F. K. (2015). Economic analysis of resource use efficiency among small scale cassava farmers in Nasarawa State, Nigeria: Implications for Agricultural Transformation Agenda. International Journal of Research in Agriculture and Forestry, 2(2):14-21.

        li            Obianefo CA, Aguaguiyi NF, Umebali EE & Ezeano CI (2019). Comparative Analysis of Rainfed and Dry Season Rice Farming in Value Chain Development Programme in Ayamelum Local Government Area- Anambra State. International Journal of Science and Research 8(7):1655-1659.

      lii            Nigeria data portal: Nigeria Population Censor (NPC, 2006). http://http://nigeria.opendataforafrica.org/ifpbxbd/statepopulation-2006

    liii            Kumbhakar SC, Wang HJ, Horncastle A (2015). ‘A practitioner’s guide to stochastic frontier analysis using Stata’. Cambridge University Press. www.cambridge.org/9781107609464.

     liv            Coelli TJ & Battese GE (1996). Identification of factors which influence the technical inefficiency of Indian farmers. Australian Journal of Agricultural Economics, 40(2): 103-128.

       lv            Assa MM, Abdi-Khalil E & Matchaya GC (2012). Unexploited Profit among Smallholder Farmers in Central Malawi: What are the Sources? International Journal of Applied Economics 9(2):83-95.

Cite this Article: