The Attitude In Vitro of 10 Ubiquitous Bacteria in Seawater Polluted by Benzene and Toluene

Author(s)

Afef Meftah , Nassiba Messaoudi , Foudil Khelifa , Abdallah Bourhane Djebar , Khaldoun Bachari ,

Download Full PDF Pages: 122-141 | Views: 276 | Downloads: 90 | DOI: 10.5281/zenodo.5150052

Volume 5 - June 2021 (06)

Abstract

This study focuses on specifying a number of ubiquitous non-fastidious bacteria isolated from urine hospitalized patients for their abilities to degrade benzene and toluene. Using the MALDI-Tof technique (Bruker Daltonics), these opportunist bacteria have been identified. The bacteria were inoculated and incubated in sterile water contaminated with pure benzene and toluene for 63 days, at room temperature with continuous oxygenation. Analysis by Gas Chromatography/ Mass Spectrometry (GC / MS) HP6890 / HP 5973 MS (Agilent Technologies) allowed us to determine the concentration of each hydrocarbon and their derivatives. The results showed that not only the strains were able to completely degrade benzene and toluene in a single derivative: cyclohexane after less than 30 days. But even reveals variations in cyclohexane concentrations from one strain to another. Results reveal also that the Consumption of toluene by our strains was easier than with benzene, up to complete removal of toluene derivative in both species S1687 and S1671. The 2 strains belonging to the family Moraxellaceae S1670 and S1671 degrade benzene faster with concentrations 0.0475 μg/μl and 0.0727 μg/μl respectively, While both strains S5 and S476 of the Enterobacteriaceae family, had consumed totally and more easily cyclohexane (benzene derivative) with the lowest concentrations 0.0316 μg/μl and 0.0449 μg/μl respectively, this research confirmed that benzene, toluene and their derivatives were completely consumed without producing other identifiable intermediate metabolites.

Keywords

Aromatic hydrocarbons, Benzene, Toluene, GC / MS HP6890 / HP 5973 MS (Agilent Technologies), MALDI-Tof (Bruker Daltonics), Ubiquitous bacteria.

References

       i            Anderson R T, Lovely D R. 2000. Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum contaminated aquifer.Environmental Science and Technology.34, 2261-2266.

       ii            ATSDR.2007.Agency for Toxic Substance and Disease Registry. Toxicological Profile For Xylene.Atlanta. GA.438.

      iii            Avril JL, Dabernat H, Dens F, Monteil H, Piemonty Y, Le faou A, Jaulhac B, Riot B. 1992. Bactériologie clinique. 2eme Edition, Paris, Editeur des préparations grandes écoles médecine. no32. 522p.

       iv            Bousseboua H. 2005. Microbiology elements. 2eme Edition. Constantine.Editions Campus-Club.

No2991.170p.

         v            Chakraborty R, Coates JD. 2004. Anaerobic degradation of monoaromatic hydrocarbons.

Applied Microbiology Biotechnology. 64, 437-446.

       vi            Descy J, Meex C, Melin P,Hayette PM, Huynen P, De Mol P. 2010. Mass spectrometry MALDI-TOF in clinical bacteriology or how to identify a bacterium in one minute. Revue Medicale de Liege.65: 29-34.

     vii            Drancourt M. 2010. Detection of microorganisms jn blood specimens using MALDI-TOF mass spectrometry.Clinical Microbiology and infection. Jun 8.

   viii            Fagerquist C K, Garbus B R, Miller WG, Williams KE, Yee E, Bates A H., et al. 2010. Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics. Anaytical Chemistry. 82, 2717–2725.

       ix            Farhadian M, Larroche C, Borghei M, Troquet J, Vachelard C,2006. Bioremediation of BTEX-contaminated groundwater through bioreactors, 4eme colloque Franco-Roumain de chimie appliquée. Universite Blaise Pascal. Clermont-Ferrand. France. 28 June-2 July 2006. P. 438.

         x            Farhadian M, Vachelard C, Duchez D, Larroche C. 2008. In situ bioremédiation of monoaromatic polluants in groundwater. Bioresouce Technology .99. 5296-5308.

       xi            Fritsche W and Hofrichter M. 2008. Aerobic degradation by microorganisms, Biotechnology Set, Second Edition, pp. 144-167.

     xii            Geraud M, Bopp V D. BP “Deepwater Horizon” du Golfe du Mexique a l’Afrique: un tournant pour l’industrie petroliere?.2010.EchoGeo.

   xiii            Grbic-Galic D, Vogel T M. 1987. Transformation of Toluene and benzene by mixed methanogenic cultures. Applied Environmental Microbiology. 53, 254-260

   xiv            Hunkeler D, Hohener P, Zeyer J. 2002. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. Journal of Contaminant Hydrology.59, 231-245. https://doi.org/10.1016/S0169-7722(02)00059-1.

     xv            Hillenkamp F, Karas M, Beavis R C, Chait B T.1991. Matrix-Assisted laser desorption/ionization Mass spectrometry of biopolymers. Analytical Chemistry.63,1193A.

   xvi            Junfeng D, Xiang L, Zhifeng H. Anaerobic BETX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions. Journal of Environmental Sciences. 20. 2008.585- 592.

 xvii            Kao CM, Prosser J.2001.Evaluation of naturel attenuation rate at a gasoline spill site. Journal of Hazardous Materials.82, 275-289.

xviii            Khodaei K, Nassery HR, Asadi MM, Mohammadzadeh H, Mahmoodlu MG. 2017. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp.BTEX- 30).International Biodeterioration and Biodegradation.116,234-242.

   xix            Lan H T.2009. Electrochemical destruction of polycyclic aromatic hydrocarbons contained in highly contaminated matrices.PhD thesis. University of Quebec.Canada, 73-79.

     xx            Morlett-Chavez J.A, Ascacio-Martinez J.A, Rivas-Estilla A.M, Velazques-Vadillo J.F, HaskinsW, Barrera-Saldana H.A, Acuna-Askar K. Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. International Biodeterioration and Biodegradation 64. 2010. 581-587.

   xxi            Neelja S, Manish K, Pawan KK, Jugsharan SV. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology.6,791.

 xxii            Nielsen DR, McLellan PJ, Daugulis AJ. 2006. Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber. Biotechnology Letters. 28, 1293-1298.

xxiii            Niklova N, Nenov V.2005.BTEX degradation by fungi. Water Science and Technology.51, 87- 93.

xxiv            Parenfeta-Boldu F X, Vervoort J, Grotenhuis JT, Van Groenestijn JW. 2002.Substrate interactions during the biodegradation of benzene, tolune, ethylbenzene and xylene (BTEX) hydrocarbons by the Fungus Cladophialophora sp.strain T1.Applied Environmental Microbiology.68, 2660-2665.

  xxv            Ramata T. Deterioration de la qualite des eaux du fleuve Niger.Journal Scienifique et Technique du Mali.2016.

xxvi            Reinhard M, Bowman R S, Steinle-Darling E, LeBron C A.2005. In situ biotransformation of BTEX compounds under methanogenic conditions. Ground water Monitoring and Remediation.25, 50-59.

xxvii            Roger P, Jacq V. 2000. Introduction à la bioremédiation des sols, des eaux et de l’air. Université de Provence Aix-Marseille 1. 99p.

xxviii            Sandrine Mal Jean-Dubois. Chronique des faits internationaux, RGDIP, t. 106, 2002-4, p. 951.

xxix            Schulze S, Tiehm A. 2004.Assessment of microbial natural attenuation in groundwater polluted with gasworks residues. Water and Science Technology.50, 347-353.

  xxx            Scow K M, Hicks KA. 2005. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology.16, 246-253. https://doi: 10.1016/j.copbio.2005.03.009.

xxxi            Shuai L, Haitao L, Tianjie Q, Xixin Y, Boli W, Jitao Guan, Yu L. 2017. Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Biomedicine & Pharmacotherapy 85, 564-574.

xxxii            Tarayre.C. Bioremediation de sols pollutes aux hydrocarbures. Editions Universitaires Europeennes.2012.116p

xxxiii            Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology.2001. 12:259-276.

xxxiv            Yang X, Beckmann D, Fiorenza S, Niedermeier C. 2005. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.Environmental Science andTechnology. 39, 7279-7286.

xxxv            Yassaa N, Mekiati BY, Cecinato A. 1999. Evaluation qualitative des hydrocarbures aromatiques monocyclique dans l’air urbain d’Alger par deux techniques d’extraction. Pollution atmospherique. n°164. p.93-102.

xxxvi            Yates J R. 1998. Mass spectrometry and the age of the proteome. Journalof Mass  Spectrometry. 33. 1–19. 10.1002.

Cite this Article: