Prevailing of Black Shadow on White Gold by Impacting Climate Change, Suggestions and Recommendations for Revival of Cotton Production in Pakistan
Author(s)
Asma Aslam , Rida Fatima , Muhammad Aslam , Ehtisham Hussain ,
Download Full PDF Pages: 68-81 | Views: 293 | Downloads: 87 | DOI: 10.5281/zenodo.5515340
Abstract
The Indus river basin is one of the largest cotton-growing areas in Pakistan. Cotton cultivation in this region is facing severe challenges from rapidly declining groundwater levels and the increasing number of droughts and floods, infestations of cotton insect pest complex. Predictable climate changes are expected in the future adding the uncertainty of cotton production in this region. The overall goal of this article provides and recommends, how to revive the cotton production and control of insect pest complex through Integrated Pest Management (IPM) and preserving the beneficial insect with the reference to climate change. Pakistan is ranked fifth on the 2019 Global Long-Term Climate Risk Index and it is severely impacting the negative effects of climate change on cotton production. Various emission scenarios predict that climate change will have an increasingly serious effect on the hydrology of the Indus Basin. Due to significant climate change, increase in the average temperature of the globe, the change in precipitation amounts, their patterns, and the impact of their location on cotton production. On the other side climate change conditions cotton pest especially sucking e.g. Whitefly, thrips, mealybug, aphids and mites, chewing pest like pink bollworm and armyworm have adapted to the climatic elements that help them to survive, grow, reproduce and spread based on host abundance and interaction. The impacts of climate change on cotton crops could also have a serious socio-economics implication for the rural and urban people living in the Indus Basin. In response to these climate change threats, several measures are needed to sustain cotton production and enable sustainable growth of the sectors related to cotton crops in a manner that reduces poverty, increases resilience, and achieves food security. This research article will help to shift a new paradigm to revive cotton production by successfully adapting the suggestions and recommendations to climate change and able to sustain their livelihoods in Pakistan.
Keywords
Climate change. Hydrology. Temperature. Cotton pest. Cotton production.
References
i. Bariola, L.A., 1985. Evidence of resistance to synthetic pyrethroids in field populations of pink bollworm in Southern California. Proceeding of the Beltwide Cotton Production Research Conference, Jan.6-11, National Cotton Council of America, Memphis, TN, pp: 138-138.
ii. Bange, M., Baker, J. T., Bauer, P. J., Broughton, K. J., Constable, G. A., Luo, Q., Oosterhuis, D. M., Osanai, Y., Payton, P., Tissue, D. T., Reddy, K. R., and Singh, B. K.: Climate Change and Cotton Production in Modern Farming Systems, ICAC review articles on cotton 425 production research, CAB International, https://books.google.de/books?id=KUJFjwEACAAJ, 2016.
iii. Burke, J. J. and Wanjura, D. F.: Plant Responses to Temperature Extremes, in: Physiology of Cotton, edited by Stewart, J. M., Oosterhuis, D. M., Heitholt, J. J., and Mauney, J. R., pp. 123–128, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-90-481-3195-2_12, 2010.
iv. Bellotti A, Campo BVH, Hyman G (2012) Cassava production and pest management: present and potential threats in a changing environment. Trop Plant Biol 5(1):39–72
v. Bayhan E, Ulusoy MR, Brown JK (2006) Effects of different cucurbit species and temperature on selected life history traits of the ‘B’biotype of Bemisia tabaci. Phytoparasitica 34(3):235–242
vi. Bonato O, Lurette A, Vidal C, Fargues J (2007) Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol Entomol 32(1):50–55 .Bonsignore CP (2016) Environmental
vii. Bhatti, M.A., M. Saeed and M.A. Murtaza. 1993.Host plant resistance for major cotton bollworms. The Pak. Cotton, 37 (1): 1-14.
viii. Bibi, A., Oosterhuis, D., and Gonias, E.: Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes, Journal of Cotton Science. 2008.
ix. Bowler K, Terblanche JS (2008) Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biol Rev 83:339–355
x. Cetin, O;Sener,S.Schafer,W.and Ozyurd,E.(1996).the effect of different irrigation method on yield and irrigation water use efficiency of cotton under harran plan conditions.The Report of Research Project (432-2/Ja-310(unpublished).The Research Institute of Rural Affairs,Sanliurfa,Turkey(in Turkish).
xi. Canard, M., 2001. Natural Food and Feeding Habits of Lacewings. In:Lacewingsin the Crop Envronment, McEwen P.K., T.R. New and A.E. Whirrington (Eds.). Cambridge University Press, Cambridge,pp:116-129.
xii. Chakraborty, MK & Ahmad, M. & Singh, Raj & Pal, D. & Bandopadhyay, C. & Chaulya, S.. (2002). Determination of the emission rate from various opencast mining operations. Environmental Modelling and Software. 17. 467-480. 10.1016/S1364-8152(02)00010-5.
xiii. Chamberlain, D. J., Z. Ahmad and M.R. Attique. 1986. The first record of Earias biplaga walker (Lepidoptera; Noctuidae) and Dichocrocis pincttferalis guenee (Lepidoptera: Pyralidae) attacking cotton in Pakistan. The Pakistan cotton, 40(1-2); 35-40.
xiv. Cui X, Wan F, Xie M, Liu T (2008) Efects of heat shock on survival and reproduction of two whitefy species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. J Insect Sci 8(24):1– 10. https://doi.org/10.1673/031.008.2401
xv. De bach P, Rosen D. Biological control by natural enemies 2nd ed. Cambridge, UK: Cambridge University Press; 1991
xvi. Dinther, J.B.M. 1972. Insect control and new approaches. World crops. July to August, pp: 180-182.
xvii. Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials of future irrigation water availability on agricultural production under climate change, Proceedings of the National Academy of Sciences, 111, 3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014.
xviii. Grenz, Jan & Uludag, Ahmet. (2006). Potential impacts of global change on weed problems in cotton crops in the Aegean Region of Turkey.
xix. Gillham, F.E.M., T.M. Bell, T. Arin, G.A. Matthews, C. Le Rumerur and A.B. Hearn (1995). Cotton production prospects in the next decade. World Bank, United States of America, 277 p.
xx. Gilioli G, Pasquali S, Parisi S, Winter S (2014) Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. Pest Manag Sci 70(10):1611–1623
xxi. Guo JY, Cong L, Wan FH (2013) Multiple generation efects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Insect Sci 20(4):541– 549
xxii. Han EJ, Choi BR, Lee JH (2013) Temperature-dependent development models of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Q biotype on three host plants. J Asia-Pacifc Entomol 16(1):5–10
xxiii. Hatfield, J., G. Takle, R. Grotjahn, P. Holden, R. C. Izaurralde, T. Mader, E. Marshall, and D. Liverman, 2014: Ch. 6: Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 150-174. doi:10.7930/J02Z13FR.
xxiv. Hearn, A. B. and Constable, G. A.: Irrigation for crops in a sub-humid environment VII. Evaluation of irrigation strategies for cotton, Irrigation Science, 5, 75–94, 1984.
xxv. Hall, A. E.: Crop Responses to Environment, CRC Press, https://doi.org/10.1201/9781420041088, 2000.
xxvi. Henry, C.S. and M.M. Wells, 1990. Geographical variation in the song of Chrysoperla plorabunda (Neuroptera: Chrysopidae) in north America. Ann. Entomol. Soc. Am., 83: 317-325.
xxvii. Henn,T.,and Weinzierl, R,.(1990) Alternatives in insects pest management. Beneficial insects and mites. University of illinios,Circular 1298.24pp.
xxviii. Horowitz,A.R;1986 Population dynamics of Bemisia tabaci (Gennadius):with special emphasis on cotton fields. Agric.Ecosyst .Environ.17(1-2):37-47
xxix. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the ffth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–28
xxx. ICAC (2007). Global warming and cotton production – Part 1. In: ICAC Recorder, Vol. 25, No. 4 (December2007). pp. 12–16. International Cotton Advisory Committee (ICAC). United States of America.
xxxi. ICAC (2009). Global warming and cotton production – Part 2. In: ICAC Recorder, Vol. 27, No. 1 (March2009). pp. 9–13. International Cotton Advisory Committee (ICAC). United States of America.
xxxii. International Trade Centre (ITC) Cotton and Climate Change: Impacts and Options to Mitigate and Adapt. Geneva: ITC, 2011. xii, 32 p. (Technical paper) Doc. No. MAR-11-200.E ID=42267 2011 SITC- 263 COT
xxxiii. Jiao X, Xie W, Zeng Y, Wang C, Liu B, Wang S, Wu Q, Zhang Y (2018) Lack of correlation between host choice and feeding efciency for the B and Q putative species of Bemisia tabaci on four pepper genotypes. J Pest Sci 91(1):133–143
xxxiv. Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd Edn. Cambridge University Press, Cambridge, UK., Pages: 428.
xxxv. Karner, P.J,Drought, stress and the origin of adaptation. Adaptation of plant to water and high temperature stress.1980, pp.7-20.
xxxvi. Karl, T.R., J.M. Melillo and T.C. Peterson (2009). Global climate change impacts in the United States. Cambridge University Press, United States of America, 196 p.
xxxvii. Kranthis, Kranthi KR , Lavhe NV, Baseline toxicity of cry IA toxins to the spotted bollworm, Earias Vittella F. crop protect 1999; 18:551-5
xxxviii. Kranthi KR, Russel DA changing trends in cotton pest management In: Peshin R, Dhawan AK. Editors. Integrated pest management innovation- development. Springer ; 2009.P.499-541
xxxix. Kimball, B. A.: Crop responses to elevated CO2 and interactions with H2O, N, and temperature, Current Opinion in Plant Biology, 31, 36 – 43, https://doi.org/10.1016/j.pbi.2016.03.006, 2016.
xl. Kot, J; 1979. Analysis of factors affecting the phytophage reduction by Trichogamma Westw. Species Polish Ecol. Stud., 5:5-59.
xli. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the word’s worst invasive alien species: a selection from the global invasive species database. Published by the Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission of the World Conservation Union (IUCN), 12pp. http://www.issg.org/pdf/publications/worst_100/english_100_ worst.pdf. Accessed on 17 Oct 2018.
xlii. Le Houérou, H.N.: climate change, drought and desertification, Journal of arid Enviornments,34,133- 185,1996.
xliii. Muñiz M, Nombela G (2001) Diferential variation in development of the B-and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environ Entomol 30(4):720–727
xliv. Madueke EDN, Coaker TH (1984) Temperature requirements of the whitefy Trialeurodes vaporariorum (Homoptera: Aleyrodidae) and its parasitoid Encarsia formosa (Hymenoptera: Aphelinidae). Entomol Gen 9(3):149–154
xlv. Ma FZ, Lu ZC, Wang R, Wang FH (2014) Heritability and evolutionary potential in thermal tolerance traits in the invasive Mediterranean cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 9:e103279. https://doi.org/10.1371/journ al.pone.0103279
xlvi. Mauney J R. 1998. Effect of carbon dioxide enrichment on cotton nutrient dynamics. Journal of Plant Nutrition 21 (7): 1407-26.
xlvii. Mckibben, Bill (2011). The global warming reader. New York, N.Y.: OR Books. ISBN 978-1-935928-36-2 Ruddiman W.F. (2003). “ The anthropogenic hreenhouse era behan thousands of years ago”. Climate Change. 61(3):261-293[1]
xlviii. Nordlund, D.A., A.C. Cohen and R.A. Smith, 2001. Mass-Rearing, Release Techniques, and Augmentation. In: Lacewings in the Crop Environment, McEwen P.K., T.R. New and A.E. Whittington (Eds.). Cambridge University Press, Cambridge, pp: 303-319.
xlix. National Aeronautics and Space Administration (NASA) (2013) Graphic: the relentless rise of carbon dioxide. https://clima te.nasa.gov/climate_resources/24//. Accessed 21 Aug 2017
l. National Aeronautics and Space Administration (NASA) (2016) Climate change: How do we know? http://climate.nasa.gov/evide nce//. Accessed 21 Aug 2017
li. National Aeronautics and Space Administration (NASA) (2017) NASA, NOAA data show 2016 warmest year on record globally. https://www.nasa.gov/press-release/nasa-noaa-data-show2016-warmest-year-on-record-globally/. Accessed 21 Aug 2017
lii. Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248
liii. Nava-Camberos U, Riley DG, Harris MK (2001) Temperature and host plant effects on development,survival, and fecundity of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 30(1):55–63
liv. Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20(9):709–723
lv. Orr, D.B; D.A. Landis, D.R. Mutch, G.V, Manle, S.A. Stuby and R.L. King 1997. Ground cover influence on microclimate and Trichogramma (Hymenoptera: Trichogrammatidae) augmentation in seed corn production. Environ. Entomol; 26: 433-438.
lvi. Polston JE, De Barro P, Boykin LM (2014) Transmission specifcities of plant viruses with the newly identifed species of the Bemisia tabaci species complex. Pest Manag Sci 70(10):1547–1552
lvii. Pakistan Economic Survey 2019-20, Economic Adviser’s Wing, Finance Division Government of Pakistan,Islamabad.
lviii. Puri, R. K. 1992. Mammals and hunting on the Lurah River: recommendations for management of faunal resources in the Cagar Alam Kayan Mentarang. Paper presented at Borneo R.
lix. Principi, M.M. and M. Canard, 1984. Feeding Habits. In: Biology of Chrysopidae, Canard, M., Y. Semeria and T.R. New (Ed.). Dr. W. Junk Publishers, The Hague, The Netherlands, pp: 76-92.
lx. Romies, J. and Shanower, T. G. 1996. Arthropod natural enemies of Helicoverpa armigera (HUbner). (Lepidoptera: Noctuidae) in India. Biocon. Sci. Tech., 6 (4): 481-508
lxi. Raza, S.H. (2009). Cotton production in Pakistan. A grower’s view. Presentation (.ppt) at the 68th ICAC Plenary Meeting. International Cotton Advisory Committee (ICAC). United States of America
lxii. Reddy K R, Hodges H F and Reddy V R. 1992. Temperature effects on cotton fruit retention. Agronomy Journal 84: 26-30.
lxiii. Reddy K R, Gayle Davidonis H, Johnson A S and Vinyard B T.1999. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agronomy Journal 91: 851- 8.
lxiv. Reddy K R, Sailaja I, Gayle, Davidonis H and Ramakrishna Reddy V.2004. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality Agronomy Journal 96: 1148-57.
lxv. Rajal S and Rajal B. “Climate Smart Agriculture Concept and Adaption in Nepal’’. International Journal of Research and Re-view 6 (2019):47-56
lxvi. Sengonca C, Liu B (1999) Laboratory studies on the efect of temperature and humidity on the life table of the whitefy, Aleurotuberculatus takahashi David & Subramaniam (Hom., Aleyrodidae) from southeastern China. J Pest Sci 72(2):45–48
lxvii. Sharma, O.P.,R.C. Lavekar, A. K. Pande, K.S. Rathod, A. A. Jafri, K. S. Murthy, R. N. Singh, O. M.Bambawale. 2001. Validation and adoption of bioinptensive ASHTA cotton IPM module at Sonkhed and Dongargaon village in Southern Maharashtra. Annals of Plant Protection Sci., 9(2); 193-200.
lxviii. Su Q, Li S, Shi C, Zhang J, Zhang G, Jin Z, Li C, Wang W, Zhang Y (2018) Implication of heat-shock protein 70 and UDP-glucuronosyltransferase in thiamethoxam-induced whitefy Bemisia tabaci thermotolerance. J Pest Sci 91(1):469–478
lxix. Torquebia, E. Agroforestry and climate change. (2013).
lxx. Tzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol 4(119):1–15
lxxi. Thorlakson, T., Neufeldt, H. Reducing subsistence farmers’ vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya. Agric & Food Secur 1, 15 (2012). https://doi.org/10.1186/2048-7010-1-15
lxxii. Turner, N. C., Hearn, A. B., Begg, J. E., and Constable, G. A.: Cotton (Gossypium hirsutum L.): Physiological and morphological responses 670 to water deficits and their relationship to yield, Field Crops Research, 14, 153–170, 1986.
lxxiii. Tauber, M.J., C.A. Tauber, K.M. Daane and K.S. Hagen, 2000. Commercialization of predators: Recent lessons from green lacewings (Neuroptera: Chrysopidae). Am. Entomol., 46: 26-37.
lxxiv. Van den Bosch R. The pesticide conspiracy. Berkeley: University of California Press; 1970.
lxxv. Van Steenwyk, A.R. N.C. Toscano , G.R. Bollmer, K. Kido and H.T. Reynolds, 1975. Increase of Heliothisspp. In cotton under various insectide treatment regimes. Environ. Entomol., 4: 993-996.
lxxvi. WWF (2005). Pakistan Sustainable Cotton Initiative (PSCI). World Wildlife Fund (website).
lxxvii. Wu G., F.J. Chen, F. Ge and Y.C.Sun (2007). Effects of elevated carbon dioxide on the growth and foliar chemistry of transgenic Bt cotton. In: Journal of Integrative Plant Biology 49(9). 1361–1369.
lxxviii. Wang, F. C. and S.Y. Zhang. 1991. Trichogramma pintoi and deuterotoky laboratory multiplication and field releases. Collopues-de-I’ NRA., 56: 155-157.
lxxix. Xie M, Wan FH, Chen YH, Wu G (2011) Efects of temperature on the growth and reproduction characteristics of Bemisia tabaci B-biotype and Trialeurodes vaporariorum. J Appl Entomol 135(4):252– 257
lxxx. Ziska L.H, Teasdale J.R. and Bunce J.A., 1999, "Future atmospheric carbon dioxide concentrations may increase tolerance to glyphosate [N-(phosphonomethyl) glycine] in weedy species", Weed Science, 47, 608-615.
lxxxi. Ziska, L.W., 2003,"Evaluation of yield losss in field sorghum from a C3 and C4 weeds with increasing CO2", Weed Science, 51, 914-918.
lxxxii. Ziska, L.W., Faulkner, S. and Lydon, J., 2004, "Changes in Biomass and Root:Shoot Ratio of Field-Grown Canada Thistle (Cirsium arvense), a Noxious, Invasive Weed, with Elevated CO2: Implications for Control with Glyphosate", Weed Science,52, 584-588.
Cite this Article: