Impact of Mycotoxins on Humans, Animals and Control Strategies: A Review
Author(s)
Download Full PDF Pages: 39-52 | Views: 296 | Downloads: 95 | DOI: 10.5281/zenodo.5515330
Abstract
Fusarium is mycelia fungi which can attack field crops and stored agricultural products. This fungus produces mycotoxins which can cause severe disease on cereal grains. The aim of this paper is to review the current status of fusarium, mycotoxins, diseases and control strategies of mycotoxins. First the paper describes about Fusarium mycotoxins and their Occurrence, Major mycotoxins produced by Fusarium, Diseases caused by Fusarium Biosynthesis of Fusarium mycotoxins Economical importance of Fusarium species and impacts of Fusarium mycotoxin on human and animal health. Then it presents about fusarium mycotoxins and also major mycotoxins produced by Fusarium species, such as trichothecens and fumonicins. The impacts of Fusarium mycotoxins on human and animal health and factor contributing for Fusarium invasion are described in detail. The step involved in the biosynthesis of Fusarium mycotoxins such as trichothecens and fumonicins is also outlined. Many control approaches for fusarium contamination such as chemical, biological, molecular and cultural practice explained briefly.
Keywords
Disease, Fungus, Fusarium, mycotoxin, Species
References
i. Akande KE, Abubakar MM, Adegbola TA, Bogoro SE. Nutritional and health implications of mycotoxins in animal feeds. A review. Pak. J. Nutr. 2006; (5): 398-403.
ii. Alexander NJ, Hohn TM, McCormick SP. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for the C-15 hydroxylation in trichothecene biosynthesis. Appl. Environ. Microbiol 1998; (64): 221-225.
iii. Hernández-Hernández J, Espino A , Rodríguez-Rodríguez JM , Pérez-Sierra A, León M , Abad-campos P, Armengol J. Survey of diseases caused by Fusarium spp. on palm trees in the Canary Islands. Phytopathol Mediterr. 2010; (49): 84–88.
iv. Backhouse D, Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 2014; (139): 161-173.
v. Beyer M, Pogoda F, Pallez M, Lazic J, Hoffmann L, Pasquali M. Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium head blight pathogens isolated from symptomatic wheat heads. Int. J. Food Microbiol. 2014;(77):182–183.
vi. Bhat RV, Shetty PH, Amruth RP, Sudershan RV. A food borne disease outbreak due to the consumption of moldy sorghum and maize containing fumonisin mycotoxins. Clin. Toxicol. 1997; (35): 249–255.
vii. Booth C. Fusarium: laboratory guide to the identification of the major species. Kew, Surrey: Commonwealth Mycological Institute. Anim. Res. 1971; (51): 81–99.
viii. Bottalico A, Perrone G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002; (108): 611–624.
ix. Bottalico A, Logrieco A. Toxigenic Alternaria species of economic importance. In: mycotoxins in agriculture and food safety, eds. by k. k. sinha, d. bhatnager. 1998; 65–108.
x. Buerstmary H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breed. 2009; (128): 1–26.
xi. Burgess LW. Laboratory Manual for Fusarium Research. Department of Crop Sciences, University of Sydney. 1994; (3):76-89.
xii. Burgess, LW, Backhouse D, Summerell BA, Swan LJ. Crown Rot of Wheat. Fusarium: Paul E. Nelson Memorial Symposium. 2001; (88): 271–294.
xiii. Choi BK, Cho JH, Jeong SH, Shin HS, Son SW, Yeo YK, Kang HG. Zearalenone affects immune-related parameters in lymphoid organs and serum of rats vaccinated with porcine parvovirus vaccine. Toxicological Research, 2012; (28): 279–288.
xiv. Cortinovis C, Pizzo F, Spicer LJ, Caloni F. Fusarium mycotoxins: Effects on reproductive function in domestic animals. A review: Theriogenolog. 2013; (80): 557–564.
xv. De Hoog, GS, Guarro J, Gene J, Figueras MJ. Atlas of Clinical Fungi, 2nd ed. Vol. 1. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands. 2000.
xvi. Desjardins AE, Plattner RD, Proctor RH. Linkage among genes responsible for fumonisin biosynthesis In Gibberella fujikuroi mating population. Appl. Environ. Microbiol, 1996; (62): 2571-2576.
xvii. Dill-Macky R, Jones RK. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Disease. 2000; 84(1): 71-76.
xviii. Edwards SG, Imathiu SM, Ray RV, Back M, Hare MC. Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Int. J. Food Microbiol. 2012; (156): 168–175.
xix. El-Kazzaz MK, El-Fadly GB, Hassan MAA, El-Kot GAN. Identification of some Fusarium spp. using molecular biology techniques. Egyptian Journal of Phytopathology. 2008; 36 (1-2):57-69.
xx. Frizzell C, Ndossi D, Verhaegen S, Dahl E, Eriksen G, Sorlie M, Ropstad E, Muller M, Elliott CT, Connolly L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicology Letters. 2011; (206): 210–217.
xxi. Gale, L.R., Harrison, S.A., Ward, T.J., O’Donnell, K., Milus, E.A., Gale, S.W., Kistler, H.C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in Southern Louisiana. Phytopathology.2011; (101):124–134.
xxii. Geiser DM, Jim´enez-Gasco MM, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K. FUSARIUM-ID v.1.00: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol. 2004; (110): 473–479.
xxiii. Gelderblom WC, Thiel PG,Van der Merwe KJ. The chemical and enzymatic interaction of glutathione with the fungal metabolite, fusarin C. Mutation Research, 1988; (199): 207–214.
xxiv. Geremew T. Study on Aspergillus species and Aflatoxin Levels in Sorghum (Sorghum bicolor L.) stored at different period and storage system in Kewet District, Northern Shewa, Ethiopia. MS.c thesis, Addis Ababa University, Addis Ababa, Ethiopia. 2015.
xxv. Glenn AE. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Technol. 2007; (137): 213–240.
xxvi. Goswami RS, Kistler HC. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 2004; 5(6): 515–25.
xxvii. Haratian M, Sharifnabi B, Alizadeh A, Safaie N. PCR analysis of the Tri13 gene to determine the genetic potential of Fusarium graminearum isolates from Iran to produce nivalenol and deoxynivalenol. Mycopathologia. 2008; (166): 109 -116.
xxviii. Harrison LR, Colvin BM, Green TJ, Newman LE, Cole JR. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J. Vet. Diagn. Investig. 1990; (2): 217–221.
xxix. Hennequin C, Abachin E, Symoens F, Lavarde V, Reboux C, Nolard N, Berche P. Identification of Fusarium species involved in human infections by 28S rRNA gene sequencing. J. Med. Microbiol. 1999; (37): 3586-3589.
xxx. Howard PC, Eppley RM, Stack ME, Warbritton A, Voss K.A.; Lorentzen, R.J.; Kovach, R.M.; Bucci, T.J. Fumonisin B1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ. Health Perspect. 2001, 109, 277–282.
xxxi. Hussein HS, Brasel JM. Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology. 2001;(67): 101-134.
xxxii. Jardine D, Leslie JF. Aggressiveness of Gibberella fujikuroi (Fusarium moniliforme) isolates to grain sorghum under greenhouse conditions. Plant Disease. 1992;(76): 897– 900.
xxxiii. Jarvis B B, Mokhtan-Rejali N, Schenkl E, Barros CS, Matzenbacher NI.Trichothecene mycotoxins from Brazilian Baccharis species. Phytochemistry. 1991;(30):789-797.
xxxiv. Jestoi M. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin A review. Crit. Rev. Food Sci. Nutr. 2008; (48): 21-49.
xxxv. Kelly AC, Clear RM, O’Donnell K, McCormick S, Turkington TK, Tekauz A, Gilbert J, Kistler HC, Busman M, Ward TJ. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet. Biol. 2015; (82): 22–31.
xxxvi. Khokhar MK, Hooda1 KS, Sharma SS, Singh V, Anita S. Fusariumstalk rot: amajor threat tomaize production in India Maize journal. 2014; 2(1 &2):1-6.
xxxvii. Koraichi F, Videmann B, Mazallon M, Benahmed M, Prouillac C, Lecoeur S. Zearalenone exposure modulates the expression of ABC transporters and nuclear receptors in pregnant rats and fetal liver. Toxicology Letters. 2012; (211): 246–256.
xxxviii. Kuiper-Goodman T, Scott PM, Watanabe H. Risk assessment of the mycotoxin zearalenone. Regul. Toxicol. Pharmacol. 1987; (7): 253–306.
xxxix. Lacmanova I, Pazlarova J, Kostelanska M, Hajslova J. PCR-based identification of toxigenic Fusarium species. Czech J. Food Sci. 2009; 27(2): 90-94.
xl. Larone DH. Medically Important Fungi. A Guide to Identification, 3rd ed. Washington, D.C: ASM Press. 1995.
xli. Lin Z, Xu S, Que Y, Wang J, Comstock JC, Wei J, McCord PH, Chen B, Chen RM, Zhang M. Species-specific detection and identification of fusarium species complex, the causal agent of sugarcane pokkah boeng in China. PLoS One. 2014; 9.
xlii. Loffler HJ, Straathof TP, Van R, Roebroek EJ. Fusarium resistance in Gladiolus: The development of a screening assay. J. Phytopath. 1997;(145): 465-468.
xliii. Logrieco A, Mulè G, Moretti A, Bottalico A. Toxigenic Fusarium species and mycotoxins associated with maize Ear Rot in Europe. Eur. J. Plant Pathol. 2002; (108): 597–609.
xliv. Marin DE, Taranu I, Burlacu R, Manda G, Motiu M, Neagoe I, Dragomir C, Stancu M, Calin L. Effects of zearalenone and its derivatives on porcine immune response. Toxicology in vitro: An International Journal Published in Association with BIBRA. 2011; (25): 1981–1988.
xlv. Marroquín C, Johnson NM, Phillips TD, Hayes AW. Mycotoxins in a changing global environment-A review. Food Chem Toxicol. 2014; (69): 220-230.
xlvi. Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology. 2012; (158): 98-106.
xlvii. McMullen M. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Disease. (2012) 96 (12): 1712-1728.
xlviii. McMullen M, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Desease.1997; (81): 1340–1348.
xlix. Michael J, Sweeney Alan DW. Dobson Molecular biology of mycotoxin biosynthesis FEMS Microbiology Letters. 1999; (175): 149–163.
l. Nelson P E, Dignani MC, Anaisse EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994; 7(4): 479-504.
li. Olusegun A, Hussaini AM, Isaac MO, Mojisola E, Kingsley OI, Margaret EE, Bosede FO, Mwanza M, Lubanza N, Mathew N, Lebohang M, Frank B, Hossam E-DMO, Adeniran LA, Ajagbonna OP, Sani NA, Olabode HO, Gabriel OA, Puleng L, Roger DD, Egwim E, Amanabo M, Yahaya A, Bello M, Toba SA, Ezekiel AS, Hussaini AM, Hamzah RU, Jigam AA, Makun HA, Egwim EC, Omojokun J Mycotoxin and Food Safety in Developing Countries, Edited by Hussaini Anthony Makun p. cm. Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia. 2013.
lii. Oveisi MR, Hajimahmoodi M, Memarian S, Sadeghi N, Shoeibi S. Determination of zearalenone in corn flour and a cheese snack product using high-performance liquid chromatography with fluorescence detection. Food Addit.Contam. 2005; (22): 443–448.
liii. Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-A review. Plant Patholology, 1995; (44): 207–238.
liv. Peraica M, Radić B, Lucić A, Pavlović M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999; (77): 754–766.
lv. Pineiro M, Dawson R, Costarrica ML. Monitoring program for mycotoxin contamination in Uruguayan food and feeds. Nat. Toxins. 1996; (4): 242–245.
lvi. Placinta C, D’Mello JP, Macdonald AM. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999. 78: 21–37.
lvii. Ploetz RC. Population biology of Fusarium oxysporum f. sp. cubense. In Fusarium Wilt of Banana (Ed R.C. Ploetz), pp. 63–76. APS Press, American Phytopathological Society, St. Paul, MN USA. (1990)
lviii. Plyler TR, Simone GW, Fernandez D, Kistler H C. Rapid Detection of the Fusarium oxysporum Lineage Containing the Canary Island Date Palm Wilt Pathogen. Phytopathology. 1999; 89 (5): 407–413.
lix. Proctor RH, Desjardins AE, McCormick SP, Plattner RD, Alexander NJ, Brown DW. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant Pathol. 2002; (108): 691-698.
lx. Remotti PC, Loffler HJ. The involvement of fusaric acid in the bulbrot of gladiolus. J. Phytopath. 1996; (14): 405-411.
lxi. Sardiñas N, Gil-Serna J, Santos L, Ramos AJ, González-Jaén MT, Patiño B, Vázquez C. Detection of potentially mycotoxigenic Aspergillus species in Capsicum powder by a highly sensitive PCR- based detection method. Food Control. 2011; 22 (8): 1363–1366.
lxii. Schuhmacher-Wolz U, Heine K, Schneider K. Report on Toxicity Data on Trichothecene Mycotoxins HT-2 and T-2 Toxins.Current and future experimental strategies for structural analysis of trichothecene mycotoxins-A prospectus. Toxins.2016; (3): 1518–1553.
lxiii. Shank Roxanne A, Nora AF, Paul H, François E, Barbara AB. Current and Future Experimental Strategies for Structural Analysis of Trichothecene Mycotoxins-A Prospectus. Toxins. 2011; (3):1518-1553.
lxiv. Shephard GS, Burger HM, Gambacorta L, Krska R, Powers SP, Rheeder JP, Solfr- izzo M, Sulyok M, Visconti A, Warth B. Mycological analysis and multimycotoxins in maize from rural subsistence farmers in the former Transkei, South Africa. J. Agric. Food Chem. 2013; (61): 8232–8240.
lxv. Shin J. Han H, Kim JHM, Kim JJO, Kim K S. Identification of Fusarium subglutinans, the casual pathogen of corn stalk rot. J. Agric. Life Sci. 2014; (48): 43-51.
lxvi. Siddique S. Pathogenicity and aethiology of Fusarium species associated with pokkah boeng disease on sugarcane. Mycotoxin. 2007; (31): 117–126.
lxvii. Smiley RW, Patterson LM. Pathogenic fungi associated with Fusarium foot rot of winter wheat in the semiarid Pacific Northwest. Plant Dis. 1996; (80): 944–949.
lxviii. Straathof TP, Roebroek EJA, Loffler HJM. Studies on Fusarium- Gladiolus interaction s: The Development of a screening assay. J. Phytopath. 1998; (146): 83-88.
lxix. Surai PF, Mezes M, Melnichuk SD. Mycotoxins and animal health: From oxidative stress to gene expression. Krmiva, 2008; (50): 35–43.
lxx. Voss KA, Riley RT, Norred WP, Bacon CW, Meredith FI, Howard PC, Plattner RD, Collins TFX, Hansen DK, Porter JK. An overview of rodent toxicities: Liver and kidney effects of fumonisins and Fusarium moniliforme. Environ. Health Perspect. 2001; (109): 259–266.
lxxi. Wang Y, Liu S, Zheng H, He C, Zhang H. T-2 toxin, zearalenone and fumonisin B1 in feed stuffs from China. Food Addit. Contam. 2013; (6):116–122.
lxxii. Windels CE. Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the Northern Great Plains. Phytopathology. 2000; (90): 17-22.
lxxiii. Wollenweber HW, Reinking OA. Die fusarien, ihre beschreibung, schadwirkung und bekämpfung. P. Parey, Berlin, Germany, 1935.
lxxiv. Wyatt RD. Biological effects of mycotoxins (other than aflatoxin) on poultry. Proceedings of the Symposium on Interactions of Mycotoxins in animal Production. Michigan State University, 1979; (55): 87-95.
lxxv. Xue AG, Voldeng HD, Savard ME, Fedak G, Tian X, Hsiang T. Biological control of fusarium head blight of wheat with Clonostachys rosea strain. Can. J. Plant Pathol. 2009; (31):169-179.
lxxvi. Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. Int. J. Mol. Sci. 2008; (9): 2062–2090.
lxxvii. Yiannikouris A. Jonany J. Mycotoxins in feeds and their fate in animals: A review. Zearalenone exposure modulates the expression of ABC transporters and nuclear receptors in pregnant rats and fetal liver. Toxicol. Lett. 2002; (211): 246–256.
Cite this Article: