Changes in the Structure of Arbuscular Mycorrhizal Fungi Communities and Identification of Persistent and Indicator Species in Soils of Different Cassava (Manihot Esculanta-Crantz) Growing Areas in Cote d-Ivoire
Author(s)
VOKO Bi Rosin Don-Rodrigue , OUINA Toualy Serge Tanguy , KOUADIO Aka Niangoran Marie-Stéphanie , KONATE Ibrahim ,
Download Full PDF Pages: 01-17 | Views: 370 | Downloads: 130 | DOI: 10.5281/zenodo.5733960
Abstract
Cassava's adaptation to diverse environments is thought to be linked to its ability to take better advantage of the activity of soil microorganisms, particularly the symbiosis of arbuscular mycorrhizal fungi (AMF) on which its survival depends. However, the dynamism of AMFs and the factors involved in the case of cassava monocultures practiced over long periods of time on the same soil have been little studied. In this work, the objective was to identify AMFs species frequently found in cassava rhizosphere in three agro-ecological zones of Côte d'Ivoire. Thus, the relative abundance of AMF species in relation to the ecological factors of cassava cultivation in each zone was established. The physicochemical conditions of the soils in the eastern zone (Abengourou) were favorable to cassava cultivation while in the southern zone (Azaguié), these properties were not suitable for cassava cultivation. Soils in the centre zone (Yamoussoukro) had intermediate properties. Three species of AMFs (Acaulospora colombiana, Acaulospora scrobiculata and Rhizophagus intraradices) were ubiquitous and predominant in the cassava rhizosphere whatever the zone. Some species were rare (Gigaspora margarita; Racocetra spp., Rhizophagus. Manhiotis, Paraglomus sp.). Agro-ecological zone, crop rotation and pH have an influence on the relative abundance of AMFs in the soil.
Keywords
Arbuscular mycorrhizal fungi, predominant species, cassava, agro-ecological area
References
i. Akanza, P. K. & Yao-Kouame, A. (2011). Fertilisation organo-minérale du manioc (Manihot esculenta Crantz) et diagnostic des carences du sol. J Appl Biosci 46: 3163-3172.
ii. Aubert, G. (1962) Laclassification des sols : La classification pédologique française. Cahiers de pédologie O.R.S.T.O.M. 3: 1-7.
iii. Brito, I., Goss, M. J., de Carvalho, M., Chatagnier, O. & van Tuinen, D. (2012). Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil Tillage Res 121: 63 - 67.
iv. Brundrett, M., Melville, L. & Peterson, L. (1994). Practical methods in mycorrhiza research: based on a workshop organizedin conjunction with the ninth North American Conference on Mycorrhizae, University of Guelph, Guelph, Ontario. Mycologue Publications, p 161.
v. Ceballos, I., Ruiz, M., Fernandez, C., Pena, R., Rodriguez, A. & Sanders I. R. (2013). The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop Cassava. PLoS One 8: e70633. http://dx.doi.org/10.1371/journal.pone.0070633.
vi. Coughlan, A. P., Dalpé, Y., Lapointe, L. & Piché, Y. (2000). Soil pH-induced changes in root colonization, diversity of symbiotic arbuscular mycorrhizal fungi from healthy ans declining maple forests. Can J For Res 30:1543-1554. doi:10.1139/x00-090.
vii. Dodd, J. C., Boddington, C. L., Rodriguez, A., Gonzalez-Chavez, C. & Mansur, I. (2000). Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226: 131–151 https://doi.org/10.1023/A:1026574828169.
viii. Duchaufour, P. H. (1977). Pédogenèse et classification pédologique (II). Masson Paris, p 477
ix. Gadkar, V. & Rillig, M.C. (2006). The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263 : 93-101. doi: 10.1111/j.1574-6968.2006.00412.x.
x. Garcıa de Leon, D., Moora, M., ̈Opik, M., Neuenkamp, L., Gerz, M., Jairus, T., Vasar, M., Bueno, C. G., Davison, J. & Zobel, M. (2016). Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology 92: 7. doi: 10.1093/femsec/fiw097.
xi. Gaur, A., Gaur, A. & Adholeya, A. (2000). Growth and flowering in Petuniahybrida, Callistephuschi-nensis and Impatiensbalsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Sci. Hortic 84, 151-162. doi: 10.1016/S0304-4238(99)00105-3.
xii. Gerdemann, J. W. & Nicolson, T. H. (1963). Spores of endogone species from soil by wet sieving and decanting. Trans Brit Mycol Soc 46 : 235-244.
xiii. Gosling, P., Hodge A., Goodlass, G. & Bending, G. D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113 : 17–35. https://doi.org/10.1016/j.agee.2005.09.009.
xiv. Hartnett, D. C & Wilson, G. W. T. (2002). The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244: 319–331. https://doi.org/10.1023/A:1020287726382.
xv. Hartnett, D. C. & Wilson, G. W. T. (1999). Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80: 1187–1195. https://doi.org/10.2307/177066.
xvi. Huang, S. P. & Cares J., E. (2004). Nematodes. In Anonyme. Echantillonnage (Méthodes), Restitution du séminaire d’Embu 23 au 27 février 2004, Kenya, Doc. 4/CSM-BGBD CI, p 7.
xvii. Janos, D. P. (2007). Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17: 75–91. https://doi.org/10.1007/s00572-006-0094-1.
xviii. Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I. R. & Frossard, E. (2002). Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12: 225-234. doi: 10.1007/s00572-002-0163-z.
xix. Jefwaa, J. M., Okothb, S., Wachirab, P., Karanjab, N., Kahindid, J., Njuguinie, S., Ichamia, S., Mungatu, C., Okotha, J. P. & Huisinga, J. (2012). Impact of land use types and farming practices on occurrence of arbuscular mycorrhizal fungi (AMF) Taita-Taveta district in Kenya. Agric Ecosyst Environ. 157 : 32–39.
xx. Khasa, P., Furlan V. & Lumande, K. (1990). Symbioses racinaires chez quelques essences forestières importées au Zaïre. Contribution N° 382, station de recherches, agriculture Canada, Sainte Foy. Québec, Bois et Forêts des Tropiques. 224 : 27 -33. https://doi.org/10.19182/bft1990.224.a19667.
xxi. MacDonald, D. C. (1977). Methods of soil and tissue analysis used in the analytical laboratory. Ottawa, Canada: Canadian Forestry Service Information Report MM-X-78.
xxii. Malonda, A. N., Nzola-Meso, T. M., Manga, A. M. & Yandju, M-C. (2019). Effet des champignons mycorhiziens Arbusculaires sur le phosphore des sols tropicaux et implication dans la biosynthèse du caroténoïde du manioc. Journal of Applied Biosciences, 35: 13750 – 13764. https://dx.doi.org/10.4314/jab.v135i1.2.
xxiii. Morton, J. B., Bentivenga, S. P. & Wheeler, W. W. (1993). Germ plasma in the International Collection of Arbuscular and Vesicular Arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48: 491 – 528.
xxiv. Oehl, F., Sieverding, E., Ineichen, K., Mäder, P., Boller, T. & Wiemken, A. (2003). Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol. 69 (5): 2816-2824. doi:10.1128/AEM.69.5.2816-2824.2003.
xxv. Oehl, F., Jansa, J., Ineichen, K., Mäder, P., Van der Heijden, M. (2011). Champignons mycorhiziens arbusculaires, bioindicateurs dans les sols agricoles suisses. Recherche Agronomique Suisse. 2 :304-311.
xxvi. Olsen, S. R. (1952). Measurement of surface phosphore on hydroxylapatite and phosphate rockwith radiophosphorus. J Phys Chem 56: 630-632. https://doi.org/10.1021/j150497a016
xxvii. Pansu, M & Gautheyrou, J. (2006). Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer-Verlag Berlin and Heidelberg GmbH & Co. K., p1016.
xxviii. Plenchette, C., Clermont-Dauphin, C., Meynard, J. M. & Fortin, J. A. (2005). Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85: 31-40. doi:10.4141/P03-159.
xxix. Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B. & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23: 515-531. doi: 10.1007/s00572-013-0486-y.
xxx. Rillig, M. C., Wright SF. & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effect of five plant species. Plant Soil 238: 325-333. https://doi.org/10.1023/A:1014483303813.
xxxi. Rillig, M. C., Sosa-Hernández, M. A., Roy, J., Aguilar-Trigueros, C. A., Vályi, K. & Lehmann, A. (2016). Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7, 1625. http://dx.doi.org/ 10.3389/fpls.2016.01625.
xxxii. Sanchez, P. A. & Jana B. A. (2001). Soil fertility replenishment takes off in East and southern Africa. In Intagrated Plant Nutrient Management in Sub-saharan Africa: from Concept to Pratice, Vanlauwe B, Diels J, Sanginga N, Merck (eds). CAB International: Wallingford, UK; 23-45. doi: 10.1079/9780851995762.0023.
xxxiii. Sieverding, E. (1989). Ecology of VAM fungi in tropical agrosystems. Agric Ecosyst Environ 29, 369–390.
xxxiv. Simard, S. W. & Durall, D.M. (2004). Mycorrhizal networks: a reviewof their extent, function and importance. Can J Bot, 82: 1140-1165. https://doi.org/10.1139/b04-116.
xxxv. Smith, S. E. & Read, D. J. (1997). Mycorrhizal symbiosis. 2nd edn. Academic Press, London, p 60.
xxxvi. Sturmer, S. L. & Siqueira, J. O. (2011). Species richness and spore abundance of arbuscularmycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21: 255-267. doi: 10.1007/s00572-010-0330-6.
xxxvii. Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A. & Oehl, F. (2008). Arbuscular mycorrhizal fungal communities in sub-SaharanSavannas of Benin, West Africa, as affected by agriculturalland use intensity and ecological zone. Mycorrhiza 18:181–195. doi:10.1007/s00572-008-0171-8.
xxxviii. Temegne, N. C., Foh, N. T. D., Taffouo, V. D., Wakem, G-A. & Youmbi, E. (2018). Effect of mycorrhization and soluble phosphate on growth and phosphorussupply of Voandzou [Vigna subterranea (L.) Verdc.] Legum Res, 41: 879-884. doi: 10.18805/LR-388.
xxxix. Tertuliano, M. (1993). Résistance du manioc à la cochenille farineuse Phenacoccus manihoti (Hornoptera: Pseudococcidae): rôle de quelques composés chimiques foliaires. Thèse de Doctorat de l'Universite de Rennes, I. 177 p.
xl. Walker. C., Mize, W. & McNabb, H. S. (1982). Populations of endogonaceus fungi at twopopulations in central Iowa. Can J Bot, 60: 2518–2529. https://doi.org/10.1139/b82-305.
xli. Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37: 29-38. doi:10.1097/00010694-193401000-00003.
xlii. Yang, F. Y., Li, G. Z., Zhang, D. E., Christie, P., Li, X. L. & Gai, J. P. (2010). Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biol Fertil Soil 46: 435–443. http://dx.doi.org/10.1007/s00374-010-0450-3.
xliii. Yaninek, J. S. & Schulthess, F. (1993). Developing an environmentally sound plant protection for cassava in Africa. Agric Ecosyst Environ 46 : 305–324. https://doi.org/10.1016/0167-8809(93)90032-K.
Cite this Article: