Assessment of the Effectiveness of Folical, A Physio-Activator of Plant Origin in the Treatment of Blossom-End Rot in Tomato Crops

Author(s)

KOUASSI N-dri Pacome , BOULOU Bi Bolou Antoine , KONE Daouda , CHERIF Mamadou , KASSI Fernand , CAMARA Brahima , FATOGOMA Sorho ,

Download Full PDF Pages: 29-40 | Views: 571 | Downloads: 140 | DOI: 10.5281/zenodo.6593206

Volume 5 - December 2021 (12)

Abstract

The tomato (Solanum lycopersicum L.) is a fruit vegetable that is widely consumed in Ivory Coast. However, its production is severely limited by Blossom-end rot, one of the most constraining abiotic diseases of tomato cultivation in some production areas of the country. The present work was initiated to evaluate the effectiveness of the physio-activator "Folical", based on algae extract (Ascophyllum nodosum), which is composed of GA 14 and 202.5 g/L of calcium oxide, in the treatment of Blossom-end rot of tomatoes. To achieve this objective, a trial was carried out on soil potentially deficient in calcium and magnesium. The optimal dose of Folical for efficient reduction of Blossom-end rot incidence was determined. The efficacy of this dose was compared with that of two reference products. The doses of Folical 4 L/ha, 5 L/ha and 6 L/ha as well as the recommended doses (0.25 L/ha and 109.4 Kg/ha) and tap water (product-free controls) were applied by foliar spraying in a completely randomized Fisher block system with three replicates. The doses of Folical had significant effects on reducing the rate of attacked plants and Blossom-end rot fruits. The rates of 5 L/ha and 6 L/ha, which gave the lowest rates of attacked plants, 29.36% and 37.42% respectively, also resulted in a reduction in the incidence of Blossom-end rot fruits in treated plants, which were 4.85% and 5.47% respectively, compared to the reference products; Codamin (8.4%) and Calcium Nitrate (13.78%), and the untreated control (27.48%). The 5 L/ha dose of Folical recorded the lowest fruit growth rate of 6.42% and the average weight of the highest fruit was 94.8 g.The doses of 5 L/ha and 6 L/ha of bio activator were the most effective in the treatment of tomato Blossom-end rot.

Keywords

Bio-activator, Abiotic stress, Blossom-end rot, Ivory Coast, Tomato

References

        i.            Aghofack, J, Pa Schinzoumka, et V Tatchago. 2015. « Effects of extracts or powder of Spirulina platensis and Jatropha curcas on growth and development of tomato ». Journal of Applied Biosciences 90 (1): 8413. https://doi.org/10.4314/jab.v90i1.2.

      ii.            Ahébé Marie Hélène, Koffi, Yah N’guéttia Marie, Koffi N’dodo Bony Clovis, Amon Michel Wilfried, et Atta Taky Hortense Diallo. 2021. « Effect Of Four Substrate Treatments On Disease Occurrence In Tomato [Solanum Lycopersicum L. (Solanaceae)] Field Crops, Ivory Coast ». European Scientific Journal ESJ 17 (03). https://doi.org/10.19044/esj.2021.v17n3p63.

    iii.            Aikaman D P and Houter G, 1990. Influence of radiation and humidity on transpiration: implications for calcium levels in tomato leaves.  Journal. Hortic. Sci. 65: 245-253.

     iv.            Ait Taadaouit, N., M. Hsaine, A. Rochdi, A. Nilahyane, et R. Bouharroud. 2012. « Effect of methanolic plant extracts of some Moroccan plants on Tuta absoluta (Lepidoptera, Gelechiidae)». EPPO Bulletin 42 (2): 275‑80. https://doi.org/10.1111/epp.2571.

       v.            Akassimadou E F and Yao-Kouamé A, 2014. Morpho-pedological characteristics and potentials of a secondary lowland soil developed on granite-gneiss in the Guinean savannah region (Central of Ivory Coast). J. Appl. Biosci.79 (1): 6968.

     vi.            Ali, Omar, Adesh Ramsubhag, et Jayaraj Jayaraman. 2019. « Biostimulatory Activities of Ascophyllum Nodosum Extract in Tomato and Sweet Pepper Crops in a Tropical Environment ». Édité par Yonggen Lou. PLOS ONE 14 (5): e0216710. https://doi.org/10.1371/journal.pone.0216710.

   vii.            Ballot C S A, Mawussi G, Atakpama W,  Moita-Nassy M, Yangakola T M, Zinga I, Silla S, Kpérkouma W, Dercon G and Komlan B, 2016. Characterization physicochemical soils to improve the productivity of cassava (Manihot esculenta Crantz) in the region of Damara in south-central of Central African Republic. African Agronomy. 28 (1), 1015-2288.

 viii.            Bremner JM, 1996. Nitrogen-total. In Methods of soil analysis. Part 3 - Chemical Methods. Sparks D.L., Page A.L., Helmke P.A. and Loeppert R.H. (Ed.). American Society of Agronomy, Madison, USA. SSSA Book Series 5: 1085-1122

     ix.            Casado-Vela, Juan, Susana Sellés, et Roque Bru Martínez. 2005. « Proteomic Approach to Blossom-End Rot in Tomato Fruits (Lycopersicon Esculentum M.): Antioxidant Enzymes and the Pentose Phosphate Pathway ». PROTEOMICS 5 (10): 2488‑96. https://doi.org/10.1002/pmic.200401146.

       x.            CEPROSEM., 2015. CEPROSEM – Seed Production Centre, Catalogue 2015, 11p.

     xi.            Chaux CL and Foury C L, 1994. Vegetable and market gardening. Volume III. Vegetable legumes, fruit vegetables. Tec et Doc Lavoisier, Paris (France), 563 p

   xii.            Chougar S, 2012. Bioecology of the tomato leafminer Tuta absoluta (MEYRICK, 1917) (Lepidoptera: Gelechiidae) on three greenhouse tomato varieties (Zahra, Dawson and Tavira) in the wilaya of Tizi-Ouzou. Master's thesis in Biological Sciences (Option Animals Biodiversity and Ecology of Continental Ecosystems), Faculty of Biological Sciences and Agronomic Sciences, University Mouloud Mammeri of Tizi-Ouzou, Algeria, 122 P.

 xiii.            Christian, Tano Djè Kévin, N’Depo Ossey Robert, N’Guessan Ange Parfait, Obodji Adagba, et Yéboué N’Guessan Lucie. s. d. « Insecticidal Effect of Aqueous Extracts of Two Plants on Hellula undalis Fabricius, 1781 (Lepidoptera: Pyralidae), Pest of Cabbage Crop Brassica oleracea L. (Daloa, Ivory Coast) », 13.

 xiv.            De Saeger, Jonas, Stan Van Praet, Danny Vereecke, Jihae Park, Silke Jacques, Taejun Han, et Stephen Depuydt. 2020. « Toward the Molecular Understanding of the Action Mechanism of Ascophyllum Nodosum Extracts on Plants ». Journal of Applied Phycology 32 (1): 573‑97. https://doi.org/10.1007/s10811-019-01903-9.

   xv.            Djidji AH, Zohouri GP, Fondio L, Nzi JC and Kouame NC, 2010. Effect of shelter on the behaviour of tomato (Solanum lycopersicum L.) in the rainy season in southern Ivory Coast. J. Appl. Biosci. 25, 1557-1564.

 xvi.            Doumbouya M, Kome D, Fondio L, Soro S, Kouadio YJ and Aïdara D, 2010. Pathogenic characterization of Sclerotium rolfsii Saccardo (Corticiaceae) on 3 tomato varieties and effect of culture medium on the infectious potential of the fungus. Int. J. Biol. Chem. Sci.. 4,(4) 1294-1309.

xvii.            Dosso K and Koné F, 2016. Influence of termite activity on soil properties in the Lamto region (Ivory Coast): measurement of water infiltration rate and organic matter quantity under experimental conditions. J. Appl. Biosci. 105 (1): 10203 - 10214.

xviii.            Eldin M, 1971. The climate. In the natural environment of Ivory Coast. ORSTOM Paris; 73-108.

 xix.            Fondio L, Djidji HA, N’gbesso FPM and Koné D, 2013. Evaluation of nine tomatoes (Solanum Lycopersicum L.) varieties about bacterial wilt and productivity in the southern part of Ivory Coast. Int. J. Biol. Chem. Sci. 7 (3): 1078-1086.

   xx.            Hanson P M, 1996. Seasonal variation of tomato marketable fruit yields in the Philippines and Thailand, AVRDC; Adoracion virtuosic, Bureau of plant industry, Los Banos, Philippines, and Krung Sitadhani, Kasetsart University, Thailand.

 xxi.            Ho LC, 1993. Uptake and transport of calcium and the possible causes of Blossom-end rot in tomato. J. Exp. Bot. 44, (2), 509 - 518.

xxii.            Ildefonse N., 1995, Agriculture vivrière ouest - africain à travers le cas de la Côte d'Ivoire, cultures légumières. In : Institut des Savanes. Abidjan, Côte d'Ivoire, pp. 249-258.

xxiii.            Kodjo, TOUNOU Agbéko, SOKAME Bonoukpoè Mawuko, AKPAVI Sêmihinva, Komlan Kyky, et KETOH Kofi Guillaume. 2012. « Effects of plant extracts on the population dynamics of insect pests of niebe, Vigna unguiculata walp, in southern Togo. », 11.

xxiv.            Kone B, Saidou A, Camara M and Diatta S, 2010. Effect of different phosphate sources on rice yield on acid soils. African Agronomy. 2010, 22 (1): 55‑63.

xxv.            Marcelis LFM. and Ho LC 1999. Blossom-end rot about growth and calcium content in fruit of sweet pepper (Capsicum annum L.). J. Exp. Bot. 50 (332), 357-363.

xxvi.            Morley PS, Hardgrave M, Bradley M and Pilbeam DJ, 1993. Susceptibility of sweet pepper (Capsicum annum L.) cultivars in the calcium deficiency disorder « Blossom-end rot ». In Fragoso M.A.C et Van Beusichem M.L.,eds. Optimization of plant nutrition. Dordrecht, The Nethelands : Kluwer Academic Publishers. 561-567.

xxvii.            Mortley DG, Smith CB and Demchak KT, 1991. Fertilizer placement affects growth, fruit yield, and elemental concentrations and contents of tomato plants. J. Amer. Soc. Hort. Sci. 116 (4): 659-662.

xxviii.            M'Sadak Ya nd Saad I, 2015. Characterization qualitative of SOEL for a valorization best of the biomass produced. J Fundam Appl Sci. 7 (1): 33.

xxix.            Nephali, Lerato, Lizelle A. Piater, Ian A. Dubery, Veronica Patterson, Johan Huyser, Karl Burgess, et Fidele Tugizimana. 2020. « Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective ». Metabolites 10 (12): 505. https://doi.org/10.3390/metabo10120505.

xxx.            Ngk, Sopkoutie, Abdulai An, Tarla Dn, Djeugap Fj, Galani Yjh, Ekengoue Cm, Tabang Wm, Nya E, et Payne Vk. 2021. « Phytosanitary Practices And Evaluation Of 17 Pesticides Residues In Tomatoes Fruits Produced In Foumbot District Western Highland-Cameroon ». European Scientific Journal ESJ 17 (03). https://doi.org/10.19044/esj.2021.v17n3p30.

xxxi.            Olsen SR and Sommers LE, 1982. Phosphorus. In: Page AL, Miller RH, Kenney DR (ed) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Agronomy 9, Second Edition. Madison, Wisconsin, pp. 403- 427

xxxii.            Saure MC. 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.) calcium- or a stress-related disorder? Scientia Horticulturae. 90 (3-4), 193–208.

xxxiii.            Son, Diakalia, Irénée Somda, Anne Legreve, et Bruno Schiffers. 2017. « Phytosanitary practices of tomato producers in Burkina Faso and risks to health and the environment ». Cahiers Agricultures 26 (2): 25005. https://doi.org/10.1051/cagri/2017010.

xxxiv.            Sorho F, Dembele D, Cherif M, Bolou BA, Kassi F, N’guessan AC and Kone D, 2014. Identification and distribution of some viral diseases of solanaceous in Côte D'Ivoire. International journal of sciences.3 (9), 55-62

xxxv.            Sun, Yanqi, Hao Feng, et Fulai Liu. 2013. « Comparative Effect of Partial Root-Zone Drying and Deficit Irrigation on Incidence of Blossom-End Rot in Tomato under Varied Calcium Rates ». Journal of Experimental Botany 64 (7): 2107‑16. https://doi.org/10.1093/jxb/ert067.

xxxvi.            Suzuki, K., M. Shono, et Y. Egawa. 2003. « Localization of Calcium in the Pericarp Cells of Tomato Fruits during the Development of Blossom-End Rot ». Protoplasma 222 (3‑4): 149‑56. https://doi.org/10.1007/s00709-003-0018-2.

xxxvii.            Taylor, M D, S J Locascio, et M R Alligood. s. d. « Incidence of Blossom-end rot and fruit firmness of tomato affected by irrigation quantity and calcium source », 4.

xxxviii.            Tonetto de Freitas, Sergio, Malkeet Padda, Qingyu Wu, Sunghun Park, et Elizabeth J. Mitcham. 2011. « Dynamic Alternations in Cellular and Molecular Components during Blossom-End Rot Development in Tomatoes Expressing SCAX1, a Constitutively Active Ca2+/H+ Antiporter from Arabidopsis ». Plant Physiology 156 (2): 844‑55. https://doi.org/10.1104/pp.111.175208.

xxxix.            Yarou, Boni Barthélémy, Pierre Silvie, Françoise Assogba Komlan, Armel Mensah, Taofic Alabi, François Verheggen, et Frédéric Francis. 2017. « Pesticide plants and protection of vegetable crops in West Africa (bibliographic synthesis) ». Biotechnol. Agron. Soc. Environ., 17.

Cite this Article: