Growth and Inhibitory Effect of Bacillus subtilis Against Fungi of Tomato Plants
Author(s)
Download Full PDF Pages: 11-16 | Views: 322 | Downloads: 112 | DOI: 10.5281/zenodo.6596733
Abstract
Tomato is one of the important economic vegetable crops which are attacked by several serious diseases such as leaf blight. Bacillus genera is most feasible biocontrol microorganism suppress several pathogens like Alternaria spp. The efficiency of the antagonistic' treated plant by strains was evaluated using an in vitro assay. Dual culture examination was performed to investigate the ability of antagonistic bacteria to inhibit the growth of leaf blight caused by Alternaria spp. The efficacy of antagonistic Bacillus subtilis showed that the bacterium effectively suppressed the development of Alternaria alternata and Alternaria sp. at 38.67 and 32.89 % respectively while chemical fungicide agent (mancozeb) could inhibit the pathogen at 38.89 %. The shake flask culture of B. subtilis in 7 formulas media was carried at laboratory with 200 rpm for 120 h at room temperature (30°C). The results showed that the cell density at 96 h has been found for all medium. The highest cell density of 3.6 x 108 CFU mL-1 was achieved from NGB medium. These findings support the potential use of B. subtilis for biological control of Alternaria spp. on tomato plants
Keywords
antagonistic bacteria, biological control, leaf blight, Bacillus subtilis, Alternaria spp.
References
i. Bahramisharif, A. and Rose, L. E. (2019). Efficacy of biological agents and compost on growth and resistance of tomatoes to late blight. Planta, 249, 799-813.
ii. Baker, K. F. and Cook. R. J. (1974). Biological Control of Plant Pathogen. W.H.Freeman, San Francisco.
iii. Berg, G. and Ballin, G. (1994). Bacterial Antagonists to Verticillium dahliae Kleb, J. Phytopathol, 141 (1), 99-110.
iv. Cao, S., Yang, Z., Hua, Z. and Zheng, Y. (2011). The effects of the combination of Pichia membranefaciens and BTH on controlling of blue mould decay caused by Penicillium expansum in peach fruit. Food Chemistry, 124, 991-996.
v. Dahod, S. K. (1999). Raw materials selection and medium development for industrial fermentation processes. In A. L. Demain & J. E. Davies (Eds.), Manual of Industrial Microbiology and Biotechnology (2nd ed., pp. 213-220). Washington, D.C.: American Society for Microbiology.
vi. Fiddaman, P. J. and Rossall, S. (1994). Effect of substrate on the production of antifungal volatiles from bacillus subtilis. J. Appl. Bacteriol., 76 (4), 395-405.
vii. Grover, M., Nain, L., Singh, S. B. and Saxena, A. K. (2010). Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Current Microbiology, 60, 99-106.
viii. Hashem, M. and Abo-Elyousr, K.A. (2011). Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Protection, 30, 285-292.
ix. Lazaridou, A., Roukas, T., Biliaderis, C. G., and Vaikousi, H. (2002). Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microbiol. Tech., 31, 122-132.
x. Liu, Y. F., Chen, Z. Y., Ng, T. B., Zhang, J., Zhou, M. G., Song, F. P. and Liu, Y. Z. (2006). Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides, 28, 553-559.
xi. Matar, S. M., El-Kazzaz, S. A., Wagih, E. E., El-Diwany, A.I., Moustafa, H. E., Abo-Zaid, G. A., Abd-Elsalam, H.E., and Hafez, E. E. (2009). Antagonistic and Inhibitory Effect of Bacillus subtilis Against Certain Plant Pathogenic Fungi, I. Biotechnology, 8, 53-61.
xii. Matthew, E. Spletzer and Alexander, J. Enyedi. (1999). Salicylic Acid Induces Resistance to Alternaria solani in Hydroponically Grown Tomato. Phytopathology, 89 (9), 722-727.
xiii. Montealegre, J. R., Herrera, R., Velasquez, J. C., Silva, P., Besoain, X. and Perez, L. M. (2005). Biocontrol of root and crown rot in tomatoes under greenhouse conditions using Trichoderma harzianum and Paenibacillus lentimorbus. additional effect of solarization. Electronic Biotech, 8, 249-257.
xiv. Morton, D. J. and Stroube, W. H. (1955). Antagonistic and stimulatory effects of soil microorganisms upon Sclerotium rolfsii. Phytopathology 45, 417–420.
xv. Peng, L. P. and Mustafa, M. (2003). Production of non-volatile antifungal from Bacillus subtilis on selected solid medium. http://www.fsas.upm- edu.my/~muska/Thesis%20AH%20 Peng.pdf (20/04/2555).
xvi. Phichai, K. (2008). Fermentation Technology. Chiangmai : Chiangmai Rajabhat University.
xvii. Phichai, K. (2020). High density cultivation by microorganisms. Chiangmai : Chiangmai Rajabhat University.
xviii. Riesenberg, D. (1991). High-cell-density cultivation of Escherichia coli. Biotechnol, 2, 380-384.
xix. Srinon, W., Chuncheen, K., Jirattiwarutkul, K., Soytong, K. and Kanokmedhakul, S. (2006). Efficacies of antagonistic fungi against Fusarium wilt disease of cucumber and tomato and the assay of its enzyme activity. J. Agric. Technol., 2 (2), 191-201.
xx. Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J. and Entian, K. D. (2002). Two different antibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. Journal of Bacteriology, 184, 1703-1711.
xxi. Tronsmo, A. (1992). Leaf and blossom epiphytes and endophytes as biological agents of plant diseases In: Tjamos, E. C., Papavizas, G. C. and Cook, R. J. (eds). Biological control of plant disease; progress and challenges for the future. NATO ASI series. A life sciences vol 230, Plenum Press, New York. 43 - 54.
xxii. Weller, D. M., Raaijmakers, J. M., McSpadden Gardener, B. B. and Thomashow, L. S. (2002). Microbial populations responsible for specific soilsuppressiveness to plant pathogens. Annu. Rev. Phytopathol, 40, 309-348.
Cite this Article: